
Math 108b: Review of 108a

Vector Spaces, Basis and Dimension

What is a vector space? We can think of it as an abstraction of the set of vectors we are used to
drawing in the plane R2. The important properties of vectors are that we can
them together and we can a vector by any . It is
the algebraic properties of these operations that we abstract: every vector space is required
to satisfy them.

Definition A vector space V over a field F (in examples, often R or C) is defined by the
set of vectors V and that satisfy:

(1) Addition is commutative.

(2) Addition is associative.

(3) 0 exists.

(4) Additive inverses exist.

Multiplication by scalars:


(5) For all x ∈ V ,

(6) For all x ∈ V and for all a, b ∈ F ,

Distributive laws:


(7)

(8)

The picture of vectors in R2 or R3 is very useful to understand vector spaces and gain
some geometric intuition for and understanding of theorems, but there are many other
natural examples of vector spaces. For instance, the set of n×m matrices with real entries
(Mn×m(R))or the set of polynomials with complex coefficients P(C).

Definition Let V be a vector space over F and W be a subset of V . W is called a subspace
of V if .

Theorem Let V be a vector space and W be a subset of V . W is a subspace of V if and
only if

(a)

(b)

(I.e., and .)

Examples: The subset of symmetric matrices is a subspace of Mn×m(F ) and the subset of
polynomials of degree less than or equal to n (denoted by Pn(F )) is a subspace of P(F ).



Definition A subset S of a vector space V is linearly dependent if distinct
vectors u1, u2, ..., un ∈ S and scalars a1, a2, ..., an, at least one of which is , such that

.

(In other words, S is linearly dependent if there is a nontrivial of 0
as a of vectors in the set S.)

Definition A subset S of a vector space V that is not linearly dependent is called linearly
independent.

Definition A basis β for a vector space V is a linear independent subset of V that generates
V . (I.e., .)

Theorem A set β = {u1, u2, ..., un} is a basis for V if and only if every v ∈ V there is a
unique list of scalars a1, a2, ..., an ∈ F such that

.

Theorem If V has a finite basis, then every basis of V has the same number of elements.
In this case, V is called finite-dimensional and the dimension of V is defined to be the
cardinality of any basis of V .

Finite-dimensional vector spaces – by definition! – must have a basis. What about infi-
nite dimensional ones? Using the axiom of choice, it can be shown that every vector space
has a basis.

Linear Transformations

Definition Let V and W be vector spaces over F . A function T : V → W is a lin-
ear transformation from V to W if, for all x, y ∈ V and c ∈ F , both (i) and (ii) hold:

(i)

(ii)

Some examples of linear transformations: the identity map, the zero transformation, differ-
entiation of polynomials (this is a map from P(F ) to P(F )).

Definition Let T : V → W be a linear transformation from a vector space V to a vector
space W . The null space (or kernel) of T , N(T ) = .

We can prove that for every linear transformation T : V → W , N(T ) is a
of V . If N(T ) is finite-dimensional, we define the nullity of T to be the dimension of N(T ).



Definition Let T : V → W be a linear transformation from a vector space V to a vector
space W . The range (or image) of T , R(T ) = .

We can prove that for every linear transformation T : V → W , R(T ) is a
of W . If R(T ) is finite-dimensional, we define the rank of T to be the dimension of R(T ).

Theorem Dimension Theorem
Let V and W be vector spaces and T : V → W be a linear transformation. If V is

, then

.

Examples

(i) To : V → W defined by To(x) = 0.

R(To) = ; N(To) = .

(ii) T1 : Pn(F ) → Pn+2(F ) defined by multiplying by T1(p(x)) = x2p(x).

R(T1) = ; N(T1) = .

(iii) T2 : Pn(F ) → P(F ) defined by differentiation: T2(x) = p′(x).

R(T2) = ; N(T2) = .

(iv) T3 : R∞ → R∞ defined by T3((x1, x2, x3...)) = (x2, x3, ...)

R(T3) = ; N(T3) = .

Matrix Representations of a Linear Transformation

Given a linear transformation T : V → W , where V and W are finite-dimensional vec-
tor spaces, we can write a representation of T as a matrix. It is important to understand
that there are many, many matrix representations for each linear transformation – we must
fix a basis for V and for W before writing down the representation!

Fix an ordered basis β = {u1, u2, ..., un} of an n-dimensional vector space V . Then, for
x ∈ V , we know we can write x = a1u1 + a2u2 + anun where a1, ..., an are unique scalars. In
other words, given that we know the basis β, the numbers a1, a2, ..., an uniquely determine
x! We denote the coordinate vector of x relative to β by

[x]β =


a1

a2
...

an


Notice that [x]β is a vector in the space F n. Also notice that [ui]β = ei; in other words, the
linear map that takes x → [x]β maps the given basis vectors to the standard basis vectors
for F n.



Fix two finite-dimensional vector spaces V and W and a linear transformation T : V → W .
Given an ordered basis β = {v1, v2, ..., vn} for V and an ordered basis γ = {w1, w2, ..., wm} for
W , we can define the matrix representation of T in the ordered bases β and γ, denoted
by A = [T ]γβ, whose entries are the unique scalars aij ∈ F such that T (vj) =

∑m
i=1 aijwi

We have just seen how, if dim(V ) = n and dim(W ) = m, a linear transformation T ∈
L(V, W ) can be represented as an m × n matrix; it is also true that every m × n matrix
defines a linear transformation from V to W . It turns out that the space of all linear
transformations from V to W , denoted by L(V, W ) is a vector space that is, in some sense,
the“same” as Mm×n(F )!

Theorem The composition of two linear transformations is a linear transformation.

Theorem Consider finite-dimensional vector spaces V, W, and Z and linear transformations
T : V → W and U : W → Z. Given ordered bases α, β, and γ for V, W, and Z,

[UT ] =

Invertibility and Isomorphism

Definition Let T : V → W be a linear transformation. T is invertible if there exists
an inverse U : W → V , that is, a function with the property TU = and UT = .
Note: If T is invertible, the inverse is denoted T−1 and is unique! Also, since T is linear,
T−1, if it exists, must also be linear.

Recall the definition of the inverse of a matrix. The following theorem states that the inverse
of the matrix representation of a linear transformation is related in the obvious way to the
inverse of the linear transformation itself!

Theorem Let V and W be finite-dimensional vector spaces with ordered bases β and γ.
A linear transformation T : V → W is invertible if and only if its matrix representation
[T ]γβ is invertible. Moreover, the matrix representation of T−1 is the inverse of the matrix
representation of T: that is, .

Definition Let V and W be vector spaces. V is isomorphic to W if there exists T ∈
L(V, W ) such that T is invertible.

Theorem Let V and W be finite-dimensional vector spaces. V is isomorphic to W if and
only if dim(V ) = dim(W ).

Theorem Let V and W be finite-dimenensional vector spaces over F with dim(V ) = m and
dim(W ) = n. The spaces L(V, W ) and Mm×n(F ) are isomorphic.

Proof: Fix ordered bases β and γ of V and W , respectively. To complete the proof, show
that the linear function Φ : L(V, W ) → Mm×n(F ) defined by Φ(T ) = [T ]γβ is invertible.


