
Math 117: Monotone and Cauchy Sequences

Some general properties of sequences that we can define include convergent, bounded, and
monotone.

Definitions.

• A sequence (sn) is convergent iff

• A sequence (sn) is bounded iff

• A sequence (sn) is increasing iff

• A sequence (sn) is decreasing iff

• A sequence (sn) is monotone iff (sn) is increasing or decreasing.

We know some theorems relating these properties:

If a sequence is , then it is .

(And therefore, if a sequence is , then it is .)

Is it true that if a sequence is bounded, then it is convergent?

However, it is true that if a sequence is bounded and , then it is
convergent.



Theorem: Monotone Convergence Theorem

If a sequence is , then it is convergent if and only if it is bounded.

Proof. Let (sn) be a sequence. (If (sn) is ,

the proof is similar – homework!) We already know that if (sn) is , it is

. To prove the other direction, we assume that (sn) is .

Consider the set

S =
{ }

.

By assumption, S is . (Also, notice that S is

since, for example, .) By the , S has a .

Let s = . We claim that lim sn = s.

Given ,

Hence, (sn) converges to s. �

Example. Define the sequence (sn) by s1 = 1 and sn+1 =
√

1 + sn for n ≥ 1. Prove (sn)
converges and find its limit.

Idea: To show (sn) converges, show that (sn) is and that (sn) is
bounded by .

Then, to find the limit, use the fact that if (sn) is a convergent sequence, then lim
n→∞

sn =

lim
n→∞

sn+1. (This is easy to prove using the definition of convergence.)



Cauchy Sequences

We now introduce a property of sequences (the Cauchy property) that certainly holds
for all convergent sequences. It turns out that this property actually implies convergence as
well! In other words, a sequence converges if and only if it is Cauchy. For a sequence to be
Cauchy, we don’t require that the terms of the sequence are eventually all close to a certain
limit, just that the terms of the sequence are eventually all close to one another.

Definition. A sequence (sn) is said to be a Cauchy sequence iff

for every , there exists such that for all ,
∣∣∣ ∣∣∣ < .

Lemma 1. Every convergent sequence is a Cauchy sequence.

Proof. Let (sn) be a convergent sequence, and let lim sn = s. By the ,

Let . Since , there exists such that

. Using this and our computation above, we find that if ,

Therefore, (sn) is a Cauchy sequence. �

Lemma 2. Every Cauchy sequence is bounded.

Proof. (Homework!) Let (sn) be a Cauchy sequence. By definition, there exists

such that .

Therefore, for every , |sn| ≤ . Let

M = .

Then, for every n ∈ N, |sn| ≤ M . Hence, the sequence (sn) is bounded. �.



Theorem: Cauchy Convergence Criterion

A sequence of real numbers is convergent iff it is a Cauchy sequence.

Proof. (Outline of the proof)

The above lemma proved that a convergent sequence must be a Cauchy sequence. Therefore,

we only need to prove the other direction. Let (sn) be a Cauchy sequence. Consider the set

S = {sn : n ∈ N}. In the case that S has only finitely many elements, the proof that (sn)

converges is left as an exercise.

Now consider the case that S is infinite. Notice that S is bounded since (sn) is a con-

vergent sequence. By the theorem, there exists a

point s ∈ R such that s is . We claim that lim sn = s.

Given , since (sn) is ,

Since s is ,

If , then

∣∣∣sn − s
∣∣∣

Thus lim sn = s. �

Note: Cauchy sequences having limits turns out to be related to completeness. For example,
it’s easy to see that in the ordered field Q, we can have Cauchy sequences that have no limit.
E.g., the sequence (qn) given by qn = 1 + 1/1! + 1/2! + ... + 1/n! is a sequence of rational
numbers that is Cauchy but has no limit in Q.

Application: If a sequence of real numbers is not Cauchy, then it is .


