Theorem. (The Archimedean Property of \mathbb{R}) The set \mathbb{N} of natural numbers is unbounded above in \mathbb{R}.

Note: We will use the completeness axiom to prove this theorem. Although the Archimedean property of \mathbb{R} is a consequence of the completeness axiom, it is weaker than completeness. Notice that \mathbb{N} is also unbounded above in \mathbb{Q}, even though \mathbb{Q} is not complete. We also have an example of an ordered field for which the Archimedean property does not hold! \mathbb{N} is bounded above in \mathbb{F}, the field of rational polynomials!

Proof by contradiction. If \mathbb{N} were bounded above in \mathbb{R}, then by ________________ ____________ \mathbb{N} would have a ________________. I.e., there exists $m \in ____$ such that $m = ______________$. Since m is the ________________, _____ is not an upper bound for \mathbb{N}. Thus there exists an $n_o \in \mathbb{N}$ such that $n_o > ______$. But then $n_o + 1 > ______$, and since $n_o + 1 \in \mathbb{N}$, this contradicts _______ _________________.

The Archimedean property is equivalent to many other statements about \mathbb{R} and \mathbb{N}.

12.10 Theorem. Each of the following is equivalent to the Archimedean property.

(a) For every $z \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that $n > z$.

(b) For every $x > 0$ and for every $y \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that $nx > y$.

(c) For every $x > 0$, there exists an $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < x$.

The proof is given in the book. The idea is that (a) is the same as the Archimedean property because (a) is essentially the statement that “For every $z \in \mathbb{R}$, z is not an upper bound for \mathbb{N}.” Then, it is fairly easy to see why (b) and (c) follow.
Theorem (Q is dense in \(\mathbb{R} \)). For every \(x, y \in \mathbb{R} \) such that \(x < y \), there exists a rational number \(r \) such that \(x < r < y \).

Notes: The idea of this proof is to find the numerator and denominator of the rational number that will be between a given \(x \) and \(y \). To do this, we first find a natural number \(n \) for which \(nx \) and \(ny \) will be more than one unit apart (this will require the Archimedean property!) Notice that the closer together \(x \) and \(y \) are, the bigger this \(n \) will need to be! Picture (assuming \(x > 0 \)):

```
0 \quad x \quad y \quad nx \quad ny
\frac{m}{n}
```

Since \(nx \) and \(ny \) are far enough apart, we expect that there exists a natural number \(m \) in between \(nx \) and \(ny \). Finally, \(\frac{m}{n} \) will be the rational number in between \(x \) and \(y \)!

Proof. Let \(x, y \in \mathbb{R} \) such that \(x < y \) be given. We will first prove the theorem in the case \(x > 0 \). Since \(y - x > 0 \), \(\frac{y}{x} \in \mathbb{R} \). Then, by the Archimedean property, there exists an \(n \in \mathbb{N} \) such that \(n > \frac{y}{x} \). Therefore, \(\frac{y}{x} < ny \). Since we are in the case \(x > 0 \), \(\frac{y}{x} > 0 \) and there exists \(m \in \mathbb{N} \) such that \(m - 1 \leq \frac{y}{x} < m \) (The proof that such an \(m \) exists uses the well-ordering property of \(\mathbb{N} \); see Exercise 12.9.) Then, \(ny > \frac{y}{x} \geq \frac{y}{x} \). Thus \(nx < m < ny \). It then follows that the rational number \(r = \frac{m}{n} \) satisfies \(x < r < y \).

Now, in the case \(x \leq 0 \), there exists \(k \in \mathbb{N} \) such that \(k > |x| \). Since \(k - |x| = k + x \) is positive and \(k + x < k + y \), the above argument proves that there is a rational number \(r \) such that \(k + x < r < k + y \). Then, letting \(r' = r - k, r' \) is a rational number such that \(x < r' < y \). □

It is also true that for every \(x, y \in \mathbb{R} \) such that \(x < y \), there exists an *irrational* number \(w \) such that \(x < w < y \). Combining these facts, it follows that for every \(x, y \in \mathbb{R} \) such that \(x < y \) there are in fact infinitely many rational numbers and infinitely many irrational numbers in between \(x \) and \(y \)!