Math 117: The Completeness Axiom

Theorem. Let D be a natural number such that D is not a perfect square. There is no rational number whose square equals D. (I.e., \sqrt{D} is not a rational number.)

Lemma. Let D be a natural number such that D is not a perfect square. Then there exists a natural number λ such that $\lambda^2 < D < (\lambda + 1)^2$.

Proof of lemma. Homework!

Proof of theorem by contradiction. Assume r is a rational number such that $r^2 = D$. Obviously, $r \neq _$ since $D \ge 1$. We can assume r > 0 (otherwise, $_$ is a rational number such that $(_)^2 = r^2 = D$ and $_ > 0$.) Since r is rational and r > 0, there exist positive integers u and t with $_$ such that $r = \frac{t}{u}$. Then, $t^2 = _$. Using the lemma, there exists a natural number λ such that $\lambda^2 < D < (\lambda + 1)^2$. Therefore,

 $_$ = $t^2 < _$.

Therefore, since u, t, and λ are positive, _____ < t < ____. These inequalities tell us that ______ is positive and that ______ < u. We rewrite the fraction $\frac{t}{u}$ as follows:

$$\frac{t}{u} = \frac{t()}{u()} = \frac{\frac{t}{u}()}{()} = \frac{()}{()}.$$

Letting $t' = _$ and $u' = _$, notice these are both positive integers and $r = _$. Since u' < u and $t' = _$ < t, this contradicts the fact that $r = \frac{t}{u}$ was $_$

Note. Theorem 12.1 in the book is stated only for prime natural numbers. However, the proof can be adapted to work for all natural numbers that are not a perfect squares by using a little bit of number theory (like prime factorizations). Notice the proof given in the book is also a proof by contradiction and even arrives at the same contradiction we did (after you assume the rational number such that $r^2 = D$ is written in lowest terms, it turns out it couldn't have been!)

Consider the set $T = \{r \in \mathbb{Q} : 0 < r^2 < 2\}.$

Does this set have an *upper bound* in \mathbb{Q} ?

But we don't expect it to have a "least upper bound" (a *supremum*) in \mathbb{Q} . However, we do expect T to have a *supremum* in \mathbb{R} – namely, we expect $\sqrt{2}$ to be the "least upper bound."

Definitions. Let S be a subset of \mathbb{R} .

- \cdot A real number x is an *upper bound* for S iff ______ for every _____.
- A real number s is the supremum of S ($s = \sup S$) iff both
 - (a) s is ______ for S.
 - (b) for every x _____, there exists k _____ such that _____.
- \cdot A real number *m* is the *maximum* of *S* iff *m* is ______ and _____.

We can similarly define *lower bound*, *infimum* (the "greatest lower bound"), and *minimum*. (Homework: Read Practice 12.6)

The Completeness Axiom. For every nonempty subset S of the real numbers is that is bounded above, sup S exists and is a real number.

Using the completeness axiom we can prove that $\sqrt{2}$ exists! In other words, there exists a positive number $x \in \mathbb{R}$ such that $x^2 = 2$. In fact, we will prove that \sqrt{D} exists for every natural number D.

Theorem. Let D be a natural number. Then, there exists a positive real number x such that $x^2 = D$.

Proof. Let $S = \{r \in \mathbb{Q} : 0 < r^2 < D\}$. Since $D \ge 1, \ldots \in S$ and S is nonempty. Also, S

is bounded above by _____ since for every $r \in S$, ______ and therefore, _____.

Therefore, by the completeness axiom, there exists $x \in \underline{\ }$ such that $\underline{\ }$. Notice

that x is positive since x is _____ and $1 \in S$. We plan to show that

 $x^2 = D$ by contradiction.

Suppose x < D.

Prove that this assumption leads to a contradiction (on another sheet of paper). Hint: What property of x will be impossible if it is the case that x < D? This is the fact that you should try to contradict!

Suppose x > D.

Prove that this assumption also leads to a contradiction. Hint: In this case, what do you know about x that you will be trying to contradict?

Since both x < D and x > D lead to a contradiction, we must have that x = D.