Math 117: The Completeness Axiom

Theorem. Let D be a natural number such that D is not a perfect square. There is no rational number whose square equals D. (I.e., \sqrt{D} is not a rational number.)

Lemma. Let D be a natural number such that D is not a perfect square. Then there exists a natural number λ such that $\lambda^{2}<D<(\lambda+1)^{2}$.

Proof of lemma. Homework!
Proof of theorem by contradiction. Assume r is a rational number such that $r^{2}=D$. Obviously, $r \neq \ldots$ since $D \geq 1$. We can assume $r>0$ (otherwise, \qquad is a rational number such that $(\ldots)^{2}=r^{2}=D$ and ___ >0.) Since r is rational and $r>0$, there exist positive integers u and t with \qquad such that $r=\frac{t}{u}$. Then, $t^{2}=$ \qquad . Using the lemma, there exists a natural number λ such that $\lambda^{2}<D<(\lambda+1)^{2}$. Therefore,
\qquad

Therefore, since u, t, and λ are positive, \qquad $<t<$ \qquad . These inequalities tell us that \qquad is positive and that \qquad $<u$. We rewrite the fraction $\frac{t}{u}$ as follows:

Letting $t^{\prime}=$ \qquad and $u^{\prime}=$ \qquad , notice these are both positive integers and $r=$ \qquad . Since $u^{\prime}<u$ and $t^{\prime}=$ \qquad $<t$, this contradicts the fact that $r=\frac{t}{u}$ was

Note. Theorem 12.1 in the book is stated only for prime natural numbers. However, the proof can be adapted to work for all natural numbers that are not a perfect squares by using a little bit of number theory (like prime factorizations). Notice the proof given in the book is also a proof by contradiction and even arrives at the same contradiction we did (after you assume the rational number such that $r^{2}=D$ is written in lowest terms, it turns out it couldn't have been!)

Consider the set $T=\left\{r \in \mathbb{Q}: 0<r^{2}<2\right\}$.
Does this set have an upper bound in \mathbb{Q} ?

But we don't expect it to have a "least upper bound" (a supremum) in \mathbb{Q}. However, we do expect T to have a supremum in \mathbb{R} - namely, we expect $\sqrt{2}$ to be the "least upper bound."

Definitions. Let S be a subset of \mathbb{R}.

- A real number x is an upper bound for S iff \qquad for every \qquad .
- A real number s is the supremum of $S(s=\sup S)$ iff both
(a) s is \qquad for S.
(b) for every x \qquad , there exists k \qquad such that \qquad .
- A real number m is the maximum of S iff m is \qquad and \qquad .

We can similarly define lower bound, infimum (the "greatest lower bound"), and minimum. (Homework: Read Practice 12.6)

The Completeness Axiom. For every nonempty subset S of the real numbers is that is bounded above, sup S exists and is a real number.

Using the completeness axiom we can prove that $\sqrt{2}$ exists! In other words, there exists a positive number $x \in \mathbb{R}$ such that $x^{2}=2$. In fact, we will prove that \sqrt{D} exists for every natural number D.

Theorem. Let D be a natural number. Then, there exists a positive real number x such that $x^{2}=D$.

Proof. Let $S=\left\{r \in \mathbb{Q}: 0<r^{2}<D\right\}$. Since $D \geq 1, \ldots \in S$ and S is nonempty. Also, S is bounded above by \qquad since for every $r \in S$, \qquad and therefore, \qquad .

Therefore, by the completeness axiom, there exists $x \in$ \qquad such that \qquad . Notice that x is positive since x is \qquad and $1 \in S$. We plan to show that $x^{2}=D$ by contradiction.

Suppose $x<D$.
Prove that this assumption leads to a contradiction (on another sheet of paper).
Hint: What property of x will be impossible if it is the case that $x<D$? This is the fact that you should try to contradict!

Suppose $x>D$.
Prove that this assumption also leads to a contradiction.
Hint: In this case, what do you know about x that you will be trying to contradict?
Since both $x<D$ and $x>D$ lead to a contradiction, we must have that $x=D$.

