Math 117: Midterm Review Problems

1. Prove the following, using the definition of the interior of a set: Given sets $S, T \subseteq \mathbb{R}$, $\operatorname{int}(S \cap T) = \operatorname{int} S \cap \operatorname{int} T$.

2. (a) State the theorem on the density of \mathbb{Q} in \mathbb{R} .

(b) Let $x \in \mathbb{R}$. Prove that $x = \sup\{q \in \mathbb{Q} : q < x\}$. (*Hints: Prove that the set* $S = \sup\{q \in \mathbb{Q} : q < x\}$ has a supremum. Let $y = \sup S$. Then, show that $y \neq x$ leads to contradiction.)

3. (a) Write the definition of the infimum of a set $S \subseteq \mathbb{R}$. (Define any words you use in your definition!)

(b) Prove that the infimum of a set $S \subseteq \mathbb{R}$ is unique.

4. (a) State the Well-Ordering Property of \mathbb{N} .

(b)Fill in the blanks of the following proof.

Theorem: The well-ordering property of \mathbb{N} implies the principle of mathematical induction. **Proof:** (by contradiction) Suppose that there exists a statement P(n) such that

- (a) P(1) is true
- (b) For all $k \in \mathbb{N}$, _____
- (c) and _

Define the set

 $S = \{ n \in \mathbb{N}, ___\}$

Then, by hypothesis (c) $S \subseteq \mathbb{N}$ is	s non-empty, so there exists $m \in \underline{\qquad}$ s	such that
by the		Since $P(1)$ is true
by hypothesis (a), $\underline{} \notin S$.	Hence, $m > $ It follows that	m-1 is a natural
number, and since $m - 1 < c$	m, By the definition	of S, $P(m-1)$ is
Then, (b) implie	es that	This im-
plies that,	which is a contradiction.	

5. Prove that if $S \subseteq \mathbb{R}$ has a minimum, then bd $S \cap S \neq \emptyset$.

6. (a)Write definitions (in terms of neighborhoods!) for an accumulation point, an isolated point, and a boundary point of a set S.

(b) Prove that a boundary point of a set $S \subseteq \mathbb{R}$ is either an accumulation point of S or an isolated point of S.

7. Prove the statement if it is true (but do not quote any theorems from the book in your proof); otherwise, give a counterexample.

(a) If $x \ge y$ and $x \le y + \epsilon$ for all $\epsilon > 0$, then x = y.

(b) If $x > y - \epsilon$ for all $\epsilon > 0$, then x > y.

8. (a) Write the definition of a compact set.

(b) Prove, using the definition of a compact set, that (0, 1] is not compact.