Math 117: Quantifiers and Negation

 \forall means _____ \exists means _____

Rewrite each of the following statements using \forall , \exists and \ni . Then, prove or disprove the statement, giving an example or counterexample where appropriate:

For all $x \in \mathbb{R}, x^2 > 0$.

<u>There exists</u> $x \in \mathbb{R}$ such that $x^2 > 0$.

For all $x \in \mathbb{R}$ such that |x - 5| < 2, $x^2 + 30 < 13x$.

For every $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that x + y = 0.

* For every $n \in \mathbb{N}$, $F(n) = 2^{2^n} + 1$ is prime.

Negate each of the following statements (assume x, y and z are real numbers):

$$\forall x, x^2 > 0$$

$$\forall x \ni |x - 5| < 2, x^2 + 30 < 13x$$

 $\exists x \ni x < 0 \land x^4 - 5 = 0$

 $\forall y, \exists x \ni x + y = 0.$

If $x^2 \ge 3$ or $y^7 \ge 2$, then $z \ge x^2 + y^2$ implies that z > 1.