Math 117: Quantifiers and Negation

\forall means \qquad \exists means \qquad
Rewrite each of the following statements using \forall, \exists and \ni. Then, prove or disprove the statement, giving an example or counterexample where appropriate:

For all $x \in \mathbb{R}, x^{2}>0$.

There exists $x \in \mathbb{R}$ such that $x^{2}>0$.

For all $x \in \mathbb{R}$ such that $|x-5|<2, x^{2}+30<13 x$.

For every $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that $x+y=0$.
\star For every $n \in \mathbb{N}, F(n)=2^{2^{n}}+1$ is prime.

Negate each of the following statements (assume x, y and z are real numbers): $\forall x, x^{2}>0$
$\forall x \ni|x-5|<2, x^{2}+30<13 x$
$\exists x \ni x<0 \wedge x^{4}-5=0$
$\forall y, \exists x \ni x+y=0$.

If $x^{2} \geq 3$ or $y^{7} \geq 2$, then $z \geq x^{2}+y^{2}$ implies that $z>1$.

