Math 117: Sequences

A sequence is a function whose domain is _____.

So, if $s : ___ \to \mathbb{R}$ is a sequence of real numbers, for each $___$, $s(__)$ must return a unique real number. (So, the *range* of a sequence of real numbers is \mathbb{R} .)

Commonly, we write _____ instead of _____ for the _____ term in a sequence. To refer to the entire sequence, use parentheses: $(s_1, s_2, s_3, ...)$ or $(___)$ or $(___)$.

Example 1. $((-1)^n)$ is the sequence (-1, 1, -1, 1, -1, 1, ...).

Example 2. Consider the sequence (s_n) where s_n is given by $1 + \frac{(-1)^{n+1}}{n}$.

$$(s_n) = \left(\begin{array}{cccc} 2 & , & \frac{1}{2} & , \\ & &$$

Thinking of the sequence (s_n) as a function, what does the graph look like?

Thinking of all the terms in the sequence (s_n) as a *subset* of real numbers $\{s_1, s_2, ...\} = \{s_n : n \in \mathbb{N}\}$, we draw this set on a real number line:

This sequence *converges* to the real number 1.

Definition. A sequence (s_n) of real numbers is said to **converge** to the real number s iff

_____, there exists _____ such that ______, $|s_n - s| <$ _____. Notation. If a sequence (s_n) converges to s, s is called the **limit** of the sequence (s_n) and we write $\lim_{n \to \infty} s_n = s$. or $s_n \to s$. Question: Why can we say "s is the limit of (s_n) "? **Theorem.** If a sequence converges, the limit of the sequence is unique. **Proof.** Let (s_n) be a sequence that converges. Let s be a limit of (s_n) and let t be a limit of (s_n) . Letting $\epsilon > 0$ be given, there must exist ______ such that and there must exist ______ such that There exists $n_o \in \mathbb{N}$ such that _____. Therefore, by the ______, $|s-t| = |(s - _) + (_ - t)|$ \leq < _____ We have shown that for every $\epsilon > 0$, $|s - t| < \epsilon$. This implies that |s - t| =_____.

Therefore, _____ \Box