Math 117: Sequences

A sequence is a function whose domain is \qquad .

So, if $s: \ldots \rightarrow \mathbb{R}$ is a sequence of real numbers, for each \qquad ,$s($ \qquad must return a unique real number. (So, the range of a sequence of real numbers is \mathbb{R}.)

Commonly, we write \qquad instead of \qquad for the \qquad term in a sequence. To refer to the entire sequence, use parentheses: $\left(s_{1}, s_{2}, s_{3}, \ldots\right)$ or (\qquad or (\qquad) .

Example 1. $\left((-1)^{n}\right)$ is the sequence $(-1,1,-1,1,-1,1, \ldots)$.
Example 2. Consider the sequence $\left(s_{n}\right)$ where s_{n} is given by $1+\frac{(-1)^{n+1}}{n}$.

$$
\left(s_{n}\right)=\left(2, \frac{1}{2}, \square, \square, \ldots\right)
$$

Thinking of the sequence $\left(s_{n}\right)$ as a function, what does the graph look like?

Thinking of all the terms in the sequence $\left(s_{n}\right)$ as a subset of real numbers $\left\{s_{1}, s_{2}, \ldots\right\}=\left\{s_{n}\right.$: $n \in \mathbb{N}\}$, we draw this set on a real number line:

This sequence converges to the real number 1 .

Definition. A sequence $\left(s_{n}\right)$ of real numbers is said to converge to the real number s iff
\qquad , there exists \qquad
such that \qquad ,$\left|s_{n}-s\right|<$ \qquad .

Notation. If a sequence $\left(s_{n}\right)$ converges to s, s is called the limit of the sequence $\left(s_{n}\right)$ and we write $\lim _{n \rightarrow \infty} s_{n}=s$. or $s_{n} \rightarrow s$.

Question: Why can we say " s is the limit of $\left(s_{n}\right)$ "?
Theorem. If a sequence converges, the limit of the sequence is unique.
Proof. Let $\left(s_{n}\right)$ be a sequence that converges. Let s be a limit of $\left(s_{n}\right)$ and let t be a limit of $\left(s_{n}\right)$. Letting $\epsilon>0$ be given, there must exist \qquad such that
and there must exist \qquad such that

There exists $n_{o} \in \mathbb{N}$ such that \qquad .

Therefore, by the \qquad ,

$$
\begin{aligned}
|s-t| & =|(s-\ldots)+(\ldots-t)| \\
& \leq \\
& <
\end{aligned}
$$

We have shown that for every $\epsilon>0,|s-t|<\epsilon$. This implies that $|s-t|=$ \qquad .

Therefore, \qquad

