
Math 117: Sequences, Part II

Example 1. Show that lim
n→∞

(
1 +

(−1)n

n

)
= 1.

Example 2. Show that lim
n→∞

4n3 − 1

2n3 + 3
= .

Example 3. Show that
4n2 + 7

2n4 − 85
converges (using the definition of convergence).

Ideas. We want to show that lim
n→∞

4n2 + 7

2n4 − 85
= . If we let ,

our goal is to prove that ∣∣∣∣ 4n2 + 7

2n4 − 85

∣∣∣∣ < .

whenever . Our idea is to first simplify the fraction by showing

that essentially,
4n2 + 7

2n4 − 85
u const for large n. It would be enough to show that, if

,

∣∣∣ ∣∣∣ ≤ k1

∣∣∣ ∣∣∣ ≥ k2

for k1 > 0 and k2 > 0, because then, we would have that
|4n2 + 7|
|2n4 − 85|

≤ . We

expect to be able to do this with, for example k1 = and k2 = .



Scratch work:

Proof. We will show that lim
n→∞

4n2 + 7

2n4 − 85
= . Let . Let

m = . If n ≥ , then both | | and | | are positive, so∣∣∣ ∣∣∣ = < because

∣∣∣ ∣∣∣ = ≥ because

Therefore, ∣∣∣∣ 4n2 + 7

2n4 − 85

∣∣∣∣ =
|4n2 + 7|
|2n4 − 85|

=
4n2 + 7

2n4 − 85
because

≤ = because

Let N = . Then, if n > ,∣∣∣∣ 4n2 + 7

2n4 − 85

∣∣∣∣ ≤ < ≤ ε.

Therefore, for every ε > 0, we have found that there exists such that

. This is the definition of lim
n→∞

4n2 + 7

2n4 − 85
= . �

Theorem. Let (sn) and (an) be sequences of real numbers and let s ∈ R. Assume lim an = 0.
Also, assume there exists k > 0 and m ∈ N such that

|sn − s| ≤ k|an| for all n ≥ m.

It follows that lim sn = s.

Proof. . Since lim an = 0, there exists N1 ∈ R such that for

every , . Let N = . Then for every

, both and . So, by assumption and by the definition of N1,

|sn − s| ≤ < = .

Therefore, lim sn = s. �



Example 4. Prove that the sequence (sn) where sn =
4n2 + 7

2n4 − 85
converges using this theo-

rem.

Let m = . We know that for n ≥ m,∣∣∣∣ 4n2 + 7

2n4 − 85

∣∣∣∣ =

≤

(See the calculations in Example 3.) Therefore, |sn − 0| = |sn| ≤ k|an| where k = >
0 and an = . Since → , the above theorem implies that sn converges
(lim sn = ).

Example 5. Prove that lim n
1
n = 1. (See Example 16.11 in the book.)

Example 6. Show that
(
(−1)n

)
diverges.

We show this by contradiction. Assume the sequence
(
(−1)n

)
converges to a limit s. Then,

let ε1 = 1.

According the definition of convergence, ,∣∣∣(−1)n − s
∣∣∣ < .

Since there exists n1 > N such that n1 is , we must have that | | < 1.

Also, there exists n2 > N such that n2 is , so | | < 1. Therefore, we

have both < s < and < s < . Since this is a contradiction, the sequence

(sn) is not convergent.

Theorem. Every convergent sequence is bounded.

Proof. Let (sn) be a convergent sequence. Let lim sn = s. From the definition of conver-

gence, we know that there exists N ∈ R such that whenever

. But, then if ,

≤ |sn − s| < .

This implies . Let M = . Then, we

have that |sn| ≤ M for all n ∈ N, so (sn) is bounded. �


