Math 117: Sequences, Part II

Example 1. Show that $\lim_{n \to \infty} \left(1 + \frac{(-1)^n}{n} \right) = 1.$

Example 2. Show that
$$\lim_{n \to \infty} \frac{4n^3 - 1}{2n^3 + 3} =$$
_____.

Example 3. Show that $\frac{4n^2+7}{2n^4-85}$ converges (using the definition of convergence).

Ideas. We want to show that $\lim_{n \to \infty} \frac{4n^2 + 7}{2n^4 - 85} =$ _____. If we let ______, our goal is to prove that

$$\left|\frac{4n^2+7}{2n^4-85}\right| < \underline{\qquad}.$$

whenever ______. Our idea is to first simplify the fraction by showing that essentially, $\frac{4n^2 + 7}{2n^4 - 85} \approx const$ ______ for large *n*. It would be enough to show that, if

for $k_1 > 0$ and $k_2 > 0$, because then, we would have that $\frac{|4n^2 + 7|}{|2n^4 - 85|} \leq$. We expect to be able to do this with, for example $k_1 =$ ____ and $k_2 =$ ____.

Scratch work:

Proof. We will show that $\lim_{n \to \infty} \frac{4n^2 + 7}{2n^4 - 85} =$ _____. Let _____. Let m =_____. If $n \ge$ _____, then both |______| and |______| are positive, so |_____ < ____ because _____ | = _____ \geq _____ because _____ Therefore, $\left|\frac{4n^2+7}{2n^4-85}\right| = \frac{|4n^2+7|}{|2n^4-85|} = \frac{4n^2+7}{2n^4-85} \quad \text{because}$ < _____ = _____ because _____ Let N =_____. Then, if n >_____, $\left|\frac{4n^2+7}{2n^4-85}\right| \leq \underline{\qquad} \leq \epsilon.$ Therefore, for every $\epsilon > 0$, we have found that there exists _____ such that _____ ___. This is the definition of $\lim_{n \to \infty} \frac{4n^2 + 7}{2n^4 - 85} = \underline{\qquad}.$ **Theorem.** Let (s_n) and (a_n) be sequences of real numbers and let $s \in \mathbb{R}$. Assume $\lim a_n = 0$. Also, assume there exists k > 0 and $m \in \mathbb{N}$ such that $|s_n - s| \le k|a_n|$ for all $n \ge m$. It follows that $\lim s_n = s$. **Proof.** ______. Since $\lim a_n = 0$, there exists $N_1 \in \mathbb{R}$ such that for every _____, _____. Let N =_____. Then for every _____, both ______ and _____. So, by assumption and by the definition of N_1 ,

$|s_n - s| \leq \underline{\qquad} = \underline{\qquad}.$

Therefore, $\lim s_n = s$.

Example 4. Prove that the sequence (s_n) where $s_n = \frac{4n^2 + 7}{2n^4 - 85}$ converges using this theorem.

Let m =____. We know that for $n \ge m$,

$$\left|\frac{4n^2+7}{2n^4-85}\right| = \underline{\qquad}$$

(See the calculations in Example 3.) Therefore, $|s_n - 0| = |s_n| \le k|a_n|$ where $k = _$ > 0 and $a_n = _$. Since $_ \rightarrow _$, the above theorem implies that s_n converges $(\lim s_n = _)$.

Example 5. Prove that $\lim n^{\frac{1}{n}} = 1$. (See Example 16.11 in the book.)

Example 6. Show that $((-1)^n)$ diverges.

We show this by contradiction. Assume the sequence $((-1)^n)$ converges to a limit s. Then, let $\epsilon_1 = 1$.

According the definition of convergence, _____

 $\left| (-1)^n - s \right| < \underline{\qquad}.$

Since there exists $n_1 > N$ such that n_1 is _____, we must have that $|____| < 1$. Also, there exists $n_2 > N$ such that n_2 is _____, so $|____| < 1$. Therefore, we have both _____< $s < ___$ and ____< $s < ___$. Since this is a contradiction, the sequence (s_n) is not convergent.

Theorem. Every convergent sequence is bounded.

Proof. Let (s_n) be a convergent sequence. Let $\lim s_n = s$. From the definition of convergence, we know that there exists $N \in \mathbb{R}$ such that ______ whenever _____. But, then if ______,

 $\underline{\qquad} \leq |s_n - s| < \underline{\qquad}.$

This implies _____. Let M =_____. Then, we

have that $|s_n| \leq M$ for all $n \in \mathbb{N}$, so (s_n) is bounded.