Math 117: Sequences, Part II

Example 1. Show that $\lim _{n \rightarrow \infty}\left(1+\frac{(-1)^{n}}{n}\right)=1$.

Example 2. Show that $\lim _{n \rightarrow \infty} \frac{4 n^{3}-1}{2 n^{3}+3}=$ \qquad .

Example 3. Show that $\frac{4 n^{2}+7}{2 n^{4}-85}$ converges (using the definition of convergence).
Ideas. We want to show that $\lim _{n \rightarrow \infty} \frac{4 n^{2}+7}{2 n^{4}-85}=$ \qquad . If we let \qquad , our goal is to prove that

$$
\left|\frac{4 n^{2}+7}{2 n^{4}-85}\right|<
$$

whenever \qquad . Our idea is to first simplify the fraction by showing that essentially, $\frac{4 n^{2}+7}{2 n^{4}-85} \approx$ const \qquad for large n. It would be enough to show that, if
\qquad ,

for $k_{1}>0$ and $k_{2}>0$, because then, we would have that $\frac{\left|4 n^{2}+7\right|}{\left|2 n^{4}-85\right|} \leq$ \qquad . We expect to be able to do this with, for example $k_{1}=$ \qquad and $k_{2}=$ \qquad .

Scratch work:

Proof. We will show that $\lim _{n \rightarrow \infty} \frac{4 n^{2}+7}{2 n^{4}-85}=$ \qquad . Let \qquad . Let $m=\ldots$. If $n \geq \ldots$, , then both $\sum_{\ldots} \mid$ and $\left.\right|_{\ldots} \mid$ are positive, so $|-\quad|=$ \qquad $<$ \qquad because \qquad $|-\quad|=$ \qquad \geq \qquad because \qquad
Therefore,

$$
\begin{array}{rlr}
\left|\frac{4 n^{2}+7}{2 n^{4}-85}\right| & =\frac{\left|4 n^{2}+7\right|}{\left|2 n^{4}-85\right|}=\frac{4 n^{2}+7}{2 n^{4}-85} & \text { because } \\
& \leq & =
\end{array}
$$

Let $N=$ \qquad . Then, if $n>\longrightarrow$,

$$
\left|\frac{4 n^{2}+7}{2 n^{4}-85}\right| \leq \quad<\quad \leq \epsilon .
$$

Therefore, for every $\epsilon>0$, we have found that there exists \qquad such that \qquad
\qquad . This is the definition of $\lim _{n \rightarrow \infty} \frac{4 n^{2}+7}{2 n^{4}-85}=$ \qquad .

Theorem. Let $\left(s_{n}\right)$ and $\left(a_{n}\right)$ be sequences of real numbers and let $s \in \mathbb{R}$. Assume $\lim a_{n}=0$. Also, assume there exists $k>0$ and $m \in \mathbb{N}$ such that

$$
\left|s_{n}-s\right| \leq k\left|a_{n}\right| \text { for all } n \geq m
$$

It follows that $\lim s_{n}=s$.

Proof. \qquad . Since $\lim a_{n}=0$, there exists $N_{1} \in \mathbb{R}$ such that for every \qquad , \qquad . Let $N=$ \qquad . Then for every
\qquad , both \qquad and \qquad . So, by assumption and by the definition of N_{1}, $\left|s_{n}-s\right| \leq$ \qquad $<$ \qquad $=$ \qquad .

Therefore, $\lim s_{n}=s$.

Example 4. Prove that the sequence $\left(s_{n}\right)$ where $s_{n}=\frac{4 n^{2}+7}{2 n^{4}-85}$ converges using this theorem.

Let $m=$ \qquad . We know that for $n \geq m$,

$$
\begin{aligned}
\left|\frac{4 n^{2}+7}{2 n^{4}-85}\right| & = \\
& \leq
\end{aligned}
$$

(See the calculations in Example 3.) Therefore, $\left|s_{n}-0\right|=\left|s_{n}\right| \leq k\left|a_{n}\right|$ where $k=$ \qquad $>$ 0 and $a_{n}=$ \qquad . Since \qquad \rightarrow \qquad , the above theorem implies that s_{n} converges $\left(\lim s_{n}=\right.$ \qquad).

Example 5. Prove that $\lim n^{\frac{1}{n}}=1$. (See Example 16.11 in the book.)
Example 6. Show that $\left((-1)^{n}\right)$ diverges.
We show this by contradiction. Assume the sequence $\left((-1)^{n}\right)$ converges to a limit s. Then, let $\epsilon_{1}=1$.

According the definition of convergence, \qquad

$$
\left|(-1)^{n}-s\right|<
$$

Since there exists $n_{1}>N$ such that n_{1} is \qquad , we must have that \qquad <1. Also, there exists $n_{2}>N$ such that n_{2} is ___ , so $\mid<1$. Therefore, we have both \qquad $<s<$ \qquad and \qquad $<s<$ \qquad . Since this is a contradiction, the sequence $\left(s_{n}\right)$ is not convergent.

Theorem. Every convergent sequence is bounded.

Proof. Let $\left(s_{n}\right)$ be a convergent sequence. Let $\lim s_{n}=s$. From the definition of convergence, we know that there exists $N \in \mathbb{R}$ such that \qquad whenever
\qquad . But, then if \qquad ,

$$
\leq\left|s_{n}-s\right|<
$$

\qquad .

This implies \qquad . Let $M=$ \qquad . Then, we have that $\left|s_{n}\right| \leq M$ for all $n \in \mathbb{N}$, so $\left(s_{n}\right)$ is bounded.

