
Math 117: Sequences, Part III

Limit Theorems

Given two sequences (sn) and (tn), we can define new sequences such as (an) where an =
sn + tn and (bn) where bn = sntn. If we know that (sn) and (tn) are convergent sequences we
can prove that (an) and (bn) are also convergent.

Theorem. Suppose that (sn) and (tn) are convergent sequences with lim sn = s and lim tn =
t, and suppose that k ∈ R. Then, the following sequences also converge: (sn + tn); (ksn);
(k + sn); (sntn); (sn/tn), provided that for all n and . Moreover,

(a) lim(sn + tn) =

(b) lim(ksn) =

(c) lim(k + sn) =

(d) lim(sntn) =

(e) lim(sn/tn) = , provided that for all n and .

Proof of (c). ((a) – (e) are proven in the book or are exercises.) We want to show: For all

ε > 0, there exists N ∈ R such that whenever .

Let ε > 0 be given. Consider | |. By the triangle inequality,∣∣∣ ∣∣∣ =

≤ |sn||tn − t|+ |sn − s||t|.

Since (sn) converges, we know that (sn) is . Therefore, there exists M > 0

such that for all n. Since ε > 0 and M > 0, ε
2M

> 0. Using the

definition of convergence, we know there exists N1 ∈ R such that

whenever . Also, since ε
2(|t|+1)

> 0 and since we know that sn → s, we can use the

definition of convergence to say there exists N2 ∈ R such that

whenver . Let N = . Then, if n > N ,∣∣∣ ∣∣∣ ≤ |sn||tn − t|+ |sn − s||t| ≤ |tn − t|+ |sn − s|

< ≤ = ε.

Hence, lim(sntn) = . �



Example. Show that lim
n→∞

4n2 + 7

2n4 − 85
= 0.

We can rewrite
4n2 + 7

2n4 − 85
=

Since lim =

Similarly, lim =

By (e), lim
4n2 + 7

2n4 − 85
= �

Theorem. Suppose that (sn) and (tn) are convergent sequences with lim sn = s and lim tn =

t. If sn ≤ tn for all n, then s ≤ t.

Proof by contradiction. Assume that both and .

Then, let ε = . Since , ε > 0, so applying the definition of convergence,

there exist N1 ∈ R and N2 ∈ R such that

< sn <

< tn <

Let N = . Then, if n > N , we have that

tn < = < sn.

This contradicts the assumption that . Thus, s ≤ t. �



Ratio Test

Theorem: Ratio Test Suppose that (sn) is a sequence of positive terms (i.e., sn ≥ 0 for
all n) and that the sequence of ratios converges to L (i.e., lim sn+1/sn = L). If L < 1, then
lim sn = 0.

Notes. We expect this to work because, if sn+1/sn → L, then for large n, sn+1/sn ≈ L.
Therefore, for large n, we expect to have sn+1 ≈ Lsn ≈ L(Lsn−1) = L2sn−1 ≈ ... ≈ Ln−1s1.
But, if L < 1, then Ln−1s1 → 0.

Example. Show that lim
np

n!
= 0 for all p > 0. Let sn = . We want to show that

the sequence (sn) converges to . Notice that every sn is . Consider

the sequence of ratios tn =
sn+1

sn

:

|tn| =

We will show that lim tn = . For all n ∈ N, (n + 1) ≤ . Therefore,

|tn| =

Hence, for all n ≥ 1, |tn| ≤ |an|, where an = is a sequence that con-

verges to . Therefore, tn → . Since the sequence of ratios
sn+1

sn

→ < 1, the

sequence (sn) must converge to by the .

Proof of the Ratio Test.



Infinite Limits

Definitions. A sequence (sn) diverges to +∞ iff

for every , there exists such that for all , .

A sequence (sn) diverges to −∞ iff

for every , there exists such that for all , .

If (sn) diverges to ±∞, we use the notation lim sn = ±∞. (This does not mean that the limit
of (sn) exists or that (sn) converges; it just indicates that (sn) diverges in a special way.)

Example. Prove that the sequence (sn) where sn =
4n2

2n− 5
diverges to +∞.

Given , the idea is to show that for ,
4n2 + 1

2n + 5
≥ . For all n,

we have that 4n2 + 1 ≥ . Also, for all n, we have that 2n + 5 ≤ =

.

Given , let . Then, if ,

4n2 + 1

2n + 5
≥

Therefore lim
4n2 + 1

2n + 5
= +∞.

Example. Show that
n!

np
diverges. (Hint: Use Theorem 17.13.)


