Math 117: Sets

Let A and B be sets. Complete the following definitions.
A is a subset of $B($ \qquad) iff \qquad
iff \qquad
A equals B (\qquad) iff \qquad
iff \qquad iff \qquad

The union of A and B is the set \qquad $=\{x:$ \qquad
The intersection of A and B is the set \qquad $=\{x:$ \qquad
The compliment of B in A is the set \qquad $=\{x:$ \qquad
A and B are disjoint iff \qquad iff \qquad

Let $A=\{2,\{3\}, 5\}, B=\{2,\{3,5\}\}, C=\{\{2\},\{3\},\{5\}\}$. Are the following statements true or false?

| $2 \in A$ | $3 \in A$ | |
| :--- | :--- | :--- | :--- |
| $2 \in C$ | \square | $\{2,5\} \subseteq A$ |
| $\{2\} \subseteq A$ | $3 \in B$ | $\{3,5\} \subseteq B$ |
| $\{2\} \subseteq C$ | $\{3\} \subseteq A$ | $\{3,5\} \subseteq C$ |
| $\{2$ | $\{3\} \subseteq B=$ | $\{2,3,5\} \in C$ |

\qquad
\qquad
\qquad
$\{2\} \subseteq C \quad\{3\} \subseteq B \quad\{2,3,5\} \in C$ \qquad
Find the sets described by the unions, intersections, and compliments below.

$A \cup B=$	$A \cap B=$	$A \backslash B=$
$A \cup C=$	$A \cap C=$	$B \backslash A=$
$B \cup C=$	$B \cap C=$	$C \backslash B=$

