Math 117: Statements

Statement: \qquad
Counterexample: \qquad

Consider the statements p, q, and r given below, and fill in the table:
p: 7 is prime
$\mathrm{q}: 10$ is odd
r: $2^{2}=8$

Statement	Symbols	
7 is prime or 10 is odd		
It is not the case that 7 is prime or 10 is odd		
7 is not prime and 10 is not odd		
If 7 is prime, then 10 is odd		
If 10 is odd or $2^{2}=8$, then 7 is not prime		
If 10 is odd implies 7 is prime, then $2^{2} \neq 8$.		

Let p and q be statements. The truth table for $p \Rightarrow q$ is given by:

p	q	$p \Rightarrow q$
T	T	
T	F	
F	T	
F	F	

Therefore, the only way for $p \Rightarrow q$ to be false is \qquad .

Describe the negation of $p \Rightarrow q: \sim(p \Rightarrow q) \Leftrightarrow$ \qquad .

