Math 122B: Complex Variables

The Cauchy-Goursat Theorem

Cauchy-Goursat Theorem. If a function \(f \) is analytic at all points interior to and on a simple closed contour \(C \) (i.e., \(f \) is analytic on some simply connected domain \(D \) containing \(C \)), then

\[
\int_C f(z) \, dz = 0.
\]

Note. If we assume that \(f' \) is continuous (and therefore the partial derivatives of \(u \) and \(v \) are continuous where \(f(z) = u(x, y) + iv(x, y) \)), this result follows immediately from Green’s theorem: Letting \(R \) be the region enclosed by the curve \(C \),

\[
\int_C f(z) \, dz = \int_C (u(x, y) + iv(x, y)) \, (dx + i \, dy) = \int_C (u \, dx - v \, dy) + i \int_C (v \, dx + u \, dy)
\]

\[
= \iint_R (-v_x - u_y) \, dA + i \iint_R (u_x - v_y) \, dA = 0
\]

since \(f \) is analytic (use the Cauchy-Riemann equations!) However, the Cauchy-Goursat theorem says we don’t need to assume that \(f' \) is continuous (only that it exists!)

Theorem. (An extension of Cauchy-Goursat)
If \(f \) is analytic in a simply connected domain \(D \), then

\[
\int_C f(z) \, dz = 0
\]

for every closed contour \(C \) lying in \(D \).

Notes.

- Combining this theorem with Theorem (§42), every function \(f \) that is analytic on a simply connected domain \(D \) must have an antiderivative on the domain \(D \).

- Given two simple closed contours such that one can be continuous deformed into the other through a region where \(f \) is analytic, the contour integrals of \(f \) over these two contours have the same value! In other words, \(f \) might not be analytic in some region \(R \), but if it is analytic outside of \(R \), then the value of the contour integrals of \(f \) must be the same for all closed contours that enclose \(R \) – of course, this value doesn’t have to be 0 since \(f \) is not analytic everywhere. (See the corollary below.)
Corollary. Let C_1 be a positively oriented simple closed contour. Then, C_1 breaks the complex plane up into two regions: the interior of C_1 and the exterior of C_1 (by the Jordan curve theorem). Let C_2 be a positively oriented simple closed contour entirely inside the interior of C_1. If f is analytic in between and on C_1 and C_2, then

$$
\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz.
$$

Proof. Connect the contours C_1 and C_2 with a line L (which starts at a point a on C_1 and ends at a point b on C_2). Integrate over a new contour C that both begins and ends at a: $C = (-C_2) \cup L \cup C_1 \cup (-L)$ (see the picture below - as you travel along C notice that the orientation is such that the domain in between C_1 and C_2 is always to the left!) Then, since this is a closed contour, the extension of Cauchy-Goursat implies that

$$
\int_{C} f(z) \, dz = \int_{C_1} f(z) \, dz - \int_{C_2} f(z) \, dz = 0.
$$

Example. We can show that $\int_{C_o} \frac{1}{z} \, dz = 2\pi i$, where C_o is the positively oriented circle of radius ϵ_o centered at the origin (for any $\epsilon_o > 0$).

Therefore, for any positively oriented simple closed contour C whose interior contains the origin,

$$
\int_{C} \frac{1}{z} \, dz = 2\pi i.
$$

(Write out the details!)