Final Review

Outline

- 1. Contour integration
 - See the midterm review!
 - Parameterizing contours; computing contour integrals in various ways
 - Cauchy-Goursat theorem; Cauchy's formula and inequality; maximum modulus principle
- 2. Taylor and Laurent series
 - A function is analytic if and only if it equals its Taylor series. What are the coefficients of the Taylor series for f(z)?
 - What does the radius of convergence of a Taylor series for f(z) around z_o depend on?
- 3. (Isolated) Singularities and Residues
 - Define removable singularity, pole (of order m), and essential singularity. Give an example of each.
 - What is the residue at an isolated singularity? Understand different ways to compute residues at a pole.
 - Theorems
 - If f(z) is analytic at z_o and $f(z_o) = 0$, then either f(z) is identically 0 or f(z) is not zero in the deleted neighborhood. $0 < |z z_o| < \epsilon$ for some $\epsilon > 0$. (This implies that if a function is analytic and zero on a line, then the function is identically 0!)
 - Lemma: If f is analytic and bounded in a deleted neighborhood $0 < |z z_o| < \epsilon$, then f(z) has a removable singularity at z_o (or is analytic at z_o).
 - Know the statement of Picard's theorem (you don't need to know a proof.)
- 4. Real Integrals
 - See the handout from class for types of integrals and examples of how to compute them using residue theory! (Sections 71–78 in the book.)
 - You will be given Jordan's inequality: $\int_0^{2\pi} e^{-R\sin\theta} d\theta \leq \frac{\pi}{R}$.
- 5. Mappings
 - Linear fractional transformations
 - Other maps: z^2 , $z^{\frac{1}{2}}$, e^z , and Log(z) (or other branches of log(z)!)
 - Conformal mappings (definition only)

Problems

•

•

1. Compute the following contour integrals:

(For the function $z^{\frac{1}{2}}$, use the branch cut $-\frac{\pi}{2} < \theta < \frac{3\pi}{2}$.)

(a)
$$\int_{\gamma_1} \bar{z} dz$$
 (b) $\int_{\gamma_1} z^{\frac{1}{2}} dz$ (c) $\int_{\gamma_2} z^{\frac{1}{2}} dz$

where γ_1 is the contour starting at $z_1 = 1$ and ending at $z_2 = 3 + 3i$ that is made up of the straight line between 1 and 2 + 3i and the straight line between 2 + 3i and 3 + 3i; and γ_2 is the straight line along the x- axis from -1 to +1.

- 2. Let f(z) be an entire function. Prove Cauchy's inequality for the maximum modulus of $f^{(n)}(z)$ on any circle $|z z_o| < R$ (i.e., inside $C_R(z_o)$). (Hint: Start with Cauchy's integral formula.)
- 3. Compute the following integrals:

(a)
$$\int_{C_3(0)} \frac{5e^{2\pi i z}}{z^2 + 3z - 4} dz$$
 (b) $\int_{C_3(-1)} \frac{5z - 2}{z(z - 1)} dz$ (c) $\int_{C_3(0)} \frac{\cos z}{(z - 4)(z - 2)^2} dz$

4. (i) State Laurent's Theorem. (Give formulas for the coefficients!)

(ii) Compute both the Laurent series of $f(z) = \frac{3}{z^2 + z}$ around the point $z_1 = 0$ and the Laurent series of f around the point $z_2 = 1$. On what domains do these series converge?

- 5. What is the definition of " z_o is a zero of order m of the function f(z)"? Prove that f(z) has a zero of order m if and only if $f(z) = (z z_o)^m g(z)$ for some function g that is analytic at z_o with $g(z_o) \neq 0$.
- 6. What does Picard's theorem tell you about the behavior of the function $e^{\frac{1}{z}}$ near z = 0?
- 7. Find the residues of f(z) at each of its isolated singularities.

(a)
$$f(z) = \frac{1}{e^z(z^2+3)}$$
 (b) $f(z) = \frac{\cos(z)}{e^z-1}$ (c) $f(z) = \frac{z}{\sin(z)}$,

8. Let g(z) have a pole of order one at z_o . Prove that

$$\lim_{\rho \to 0} \int_{\gamma} g(z) \, dz = \pi i \operatorname{Res}_{z=z_o} g(z),$$

where γ is the contour $\{z(\theta) = \rho e^{i\theta} : -\pi \leq \theta \leq \pi\}$ (Hint: Consider the Laurent series of g(z).)

9. Compute the following integrals: (i) $\int_0^\infty \frac{x\sin(ax)}{4x^2+5} dx$ (ii) P.V. $\int_{-\infty}^\infty \frac{1}{x^2+3x+4} dx$

- 10. Compute the integral $\int_0^\infty \frac{x^a}{(x^2+2)^2} dx$, where -1 < a < 3.
- 11. (a) Find a linear fractional transformation that takes $z_1 = \infty$ to $w_1 = 0$; $z_2 = 1$ to $w_2 = 1$ and $z_3 = 1 + i$ to $w_3 = 2i$.

(b) For the linear fractional transformation above, what point will be mapped to ∞ ? What happens to the real axis $\{y = 0\}$ under this transformation?

12. (a) What happens to the domain $\{|z| \leq 1\}$ (the unit circle) under the mapping $w = z^2$? Is the mapping conformal on this domain?

(b) Where does the domain pictured below map to in the w-plane? (This domain is bounded by the circle of radius 2 and by the lines x = 1 and y = 0.) Is the mapping conformal on this domain?

