Math 124B: PDEs

Final Review

Outline

1. Contour integration

- See the midterm review!
- Parameterizing contours; computing contour integrals in various ways
- Cauchy-Goursat theorem; Cauchy's formula and inequality; maximum modulus principle

2. Taylor and Laurent series

- A function is analytic if and only if it equals its Taylor series. What are the coefficients of the Taylor series for $f(z)$?
- What does the radius of convergence of a Taylor series for $f(z)$ around z_{o} depend on?

3. (Isolated) Singularities and Residues

- Define removable singularity, pole (of order m), and essential singularity. Give an example of each.
- What is the residue at an isolated singularity? Understand different ways to compute residues at a pole.
- Theorems
- If $f(z)$ is analytic at z_{o} and $f\left(z_{o}\right)=0$, then either $f(z)$ is identically 0 or $f(z)$ is not zero in the deleted neighborhood. $0<\left|z-z_{o}\right|<\epsilon$ for some $\epsilon>0$. (This implies that if a function is analytic and zero on a line, then the function is identically 0 !)
- Lemma: If f is analytic and bounded in a deleted neighborhood $0<\left|z-z_{o}\right|<$ ϵ, then $f(z)$ has a removable singularity at z_{o} (or is analytic at z_{o}).
- Know the statement of Picard's theorem (you don't need to know a proof.)

4. Real Integrals

- See the handout from class for types of integrals and examples of how to compute them using residue theory! (Sections 71-78 in the book.)
- You will be given Jordan's inequality: $\int_{0}^{2 \pi} e^{-R \sin \theta} d \theta \leq \frac{\pi}{R}$.

5. Mappings

- Linear fractional transformations
- Other maps: $z^{2}, z^{\frac{1}{2}}, e^{z}$, and $\log (z)$ (or other branches of $\log (z)!$)
- Conformal mappings (definition only)

Problems

1. Compute the following contour integrals:
(For the function $z^{\frac{1}{2}}$, use the branch cut $-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$.)
(a) $\int_{\gamma_{1}} \bar{z} d z$
(b) $\int_{\gamma_{1}} z^{\frac{1}{2}} d z$
(c) $\int_{\gamma_{2}} z^{\frac{1}{2}} d z$
where γ_{1} is the contour starting at $z_{1}=1$ and ending at $z_{2}=3+3 i$ that is made up of the straight line between 1 and $2+3 i$ and the straight line between $2+3 i$ and $3+3 i$; and γ_{2} is the straight line along the $x-$ axis from -1 to +1 .
2. Let $f(z)$ be an entire function. Prove Cauchy's inequality for the maximum modulus of $f^{(n)}(z)$ on any circle $\left|z-z_{o}\right|<R$ (i.e., inside $C_{R}\left(z_{o}\right)$). (Hint: Start with Cauchy's integral formula.)
3. Compute the following integrals:
(a) $\int_{C_{3}(0)} \frac{5 e^{2 \pi i z}}{z^{2}+3 z-4} d z$
(b) $\int_{C_{3}(-1)} \frac{5 z-2}{z(z-1)} d z$
(c) $\int_{C_{3}(0)} \frac{\cos z}{(z-4)(z-2)^{2}} d z$
4. (i) State Laurent's Theorem. (Give formulas for the coefficients!)
(ii) Compute both the Laurent series of $f(z)=\frac{3}{z^{2}+z}$ around the point $z_{1}=0$ and the Laurent series of f around the point $z_{2}=1$. On what domains do these series converge?
5. What is the definition of " z_{o} is a zero of order m of the function $f(z)$ "? Prove that $f(z)$ has a zero of order m if and only if $f(z)=\left(z-z_{o}\right)^{m} g(z)$ for some function g that is analytic at z_{o} with $g\left(z_{o}\right) \neq 0$.
6. What does Picard's theorem tell you about the behavior of the function $e^{\frac{1}{z}}$ near $z=0$?
7. Find the residues of $f(z)$ at each of its isolated singularities.
(a) $f(z)=\frac{1}{e^{z}\left(z^{2}+3\right)}$
(b) $f(z)=\frac{\cos (z)}{e^{z}-1}$
(c) $f(z)=\frac{z}{\sin (z)}$,
8. Let $g(z)$ have a pole of order one at z_{o}. Prove that

$$
\lim _{\rho \rightarrow 0} \int_{\gamma} g(z) d z=\pi i \operatorname{Res}_{z=z_{o}} g(z)
$$

where γ is the contour $\left\{z(\theta)=\rho e^{i \theta}:-\pi \leq \theta \leq \pi\right\}$ (Hint: Consider the Laurent series of $g(z)$.)
9. Compute the following integrals: (i) $\int_{0}^{\infty} \frac{x \sin (a x)}{4 x^{2}+5} d x \quad$ (ii) P.V. $\int_{-\infty}^{\infty} \frac{1}{x^{2}+3 x+4} d x$
10. Compute the integral $\int_{0}^{\infty} \frac{x^{a}}{\left(x^{2}+2\right)^{2}} d x$, where $-1<a<3$.
11. (a) Find a linear fractional transformation that takes $z_{1}=\infty$ to $w_{1}=0 ; z_{2}=1$ to $w_{2}=1$ and $z_{3}=1+i$ to $w_{3}=2 i$.
(b) For the linear fractional transformation above, what point will be mapped to ∞ ? What happens to the real axis $\{y=0\}$ under this transformation?
12. (a) What happens to the domain $\{|z| \leq 1\}$ (the unit circle) under the mapping $w=z^{2}$? Is the mapping conformal on this domain?
(b) Where does the domain pictured below map to in the w-plane? (This domain is bounded by the circle of radius 2 and by the lines $x=1$ and $y=0$.) Is the mapping conformal on this domain?

