Math 122B: Complex Variables

Integration

Recall the definitions of arc, simple arc and smooth arc (see §38). A contour is a continuous, piecewise smooth arc. (So any parameterization $z(t)(a \leq t \leq b)$ of a contour C is continous and differentiable, with $z^{\prime}(t)$ piecewise continuous on $[a, b]$.) Also recall the definitions of closed contour and simple closed contour.

Definition. Given a contour C and a function $f(z)$ that is piecewise continuous along C, we define the contour integral

$$
\int_{C} f(z) d z=\int_{a}^{b} f[z(t)] z^{\prime}(t) d t
$$

where $z(t)(a \leq t \leq b)$ is any parameterization of C.

Notes.

- In particular, this definition asserts that the value of $\int_{a}^{b} f[z(t)] z^{\prime}(t) d t$ is the same for all parameterizations of the contour C.
Proof. Given two parameterizations of $C, z(t)(a \leq t \leq b)$ and $Z(\tau)(\alpha \leq \tau \leq \beta)$, there exists a one-to-one function $\phi:[\alpha, \beta] \rightarrow[a, b]$ such that $t=\phi(\tau)$ for every $\alpha \leq \tau \leq \beta$ (and also such that $\phi^{\prime}>0$ since the orientation stays the same!) Then, $Z(\tau)=z(\phi(\tau))$, and $Z^{\prime}(\tau)=z^{\prime}(\phi(\tau)) \phi^{\prime}(\tau)$. By making the change of variables $t=\phi(\tau)$,

$$
\int_{a}^{b} f[z(t)] z^{\prime}(t) d t=\int_{\alpha}^{\beta} f[z(\phi(\tau))] z^{\prime}(\phi(\tau))\left(\phi^{\prime}(\tau) d \tau=\int_{\alpha}^{\beta} f[Z(\tau)] Z^{\prime}(\tau) d \tau\right.
$$

- Consider a contour C parameterized by $z(t)(a \leq t \leq b)$; $-C$ is the contour described by the same set of points traversed in the opposite direction. For example, the parameterization $w(s)=z(-s)(-b \leq s \leq-a)$ describes the contour $-C$. Make the change of variables $s=-t$:

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f[z(t)] z^{\prime}(t) d t=\int_{-a}^{-b} f[z(-s)] z^{\prime}(-s)(-d s)=\int_{-a}^{-b} f[w(s)] w^{\prime}(s) d s \\
& =-\int_{-b}^{-a} f[w(s)] w^{\prime}(s) d s=-\int_{-C} f(z) d z
\end{aligned}
$$

- The fundamental theorem of calculus holds for integrals of complex-valued functions of a real variable. If $w(t)=u(t)+i v(t)$ has an antiderivative - that is, if there exists $W(t)=U(t)+i V(t)$ such that $U^{\prime}(t)=u(t)$ and $V^{\prime}(t)=v(t)$ - then,

$$
\begin{aligned}
\int_{a}^{b} w(t) d t & =\int_{a}^{b} u(t) d t+i \int_{a}^{t} v(t) d t=\left.U(t)\right|_{a} ^{b}+\left.i V(t)\right|_{a} ^{b}=U(b)-U(a)+i V(b)-i V(a) \\
& =[U(b)+i V(b)]-[U(a)+i V(a)]=W(b)-W(a)
\end{aligned}
$$

Theorem (§42). Let $f(z)$ be continuous on a domain D.
(a) There exists an analytic function $F(z)$ such that $F^{\prime}(z)=f(z)$ in the domain D if and only if
(b) $\int_{C} f(z) d z=0$ for all closed contours that lie entirely in the domain D

Note. The statement (b) is also exactly the same as
(c) For all fixed $z_{1}, z_{2} \in D, \int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z$ for all contours C_{1}, C_{2} (lying entirely in D) from z_{1} to z_{2}.

Clearly (c) implies (b) ($z_{1}=z_{2}$ for all closed contours). For the other direction, given C_{1} and C_{2} starting and ending at the same points, just notice that $C_{1} \cup-C_{2}$ is a closed contour!

Proof of Theorem (§42).

$[(a) \Rightarrow(b)]$ Assume that there exists an antiderivative $F(z)$ of the function $f(z)$.
Given a contour C inside D, let $z(t)(a \leq t \leq b)$ be a parameterization of C. Then

$$
\int_{C} f(z) d z=\int_{C} f(z(t)) z^{\prime}(t) d t=\left.F(z(t))\right|_{t=a} ^{b}=F(z(b))-F(z(a))=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

since the fundamental theorem of calculus holds when integrating complex-valued functions of a real variable - and $F(z(t))$ is an antiderivative for $f(z(t)) z^{\prime}(t)$. (Check this using the chain rule! See $\S 38$ Exercise 5.) In particular, for any closed contour $C, \int_{C} f(z) d z=0$.
$[(b) \Rightarrow(a)]$ Assume $\int_{C} f(z) d z=0$ for every closed contour C inside D.
Define the function $F: D \rightarrow \mathbb{C}$ by

$$
F(z):=\int_{0}^{z} f(z) d z
$$

where the integration can be taken over any contour C from 0 to z (by assumption the integral will have the same value for every such contour).

Now, we just need to prove that $F^{\prime}(z)=f(z)$ for every $z \in D$! Fix $z \in D$. For any $\Delta z \neq 0$, compute

$$
\frac{F(z+\Delta z)-F(z)}{\Delta z}=
$$

Since $f(z)=f(z)\left[\frac{1}{\Delta z} \int \quad d w\right]=\frac{1}{\Delta z} \int \quad d w$, we can combine these integrals to show

$$
\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|=\frac{1}{|\Delta z|}\left|\int \quad d w\right|
$$

Finally, given $\epsilon>0$, since f is continuous at $z \in D$, we know that there exists $\delta>0$ such that

Therefore, for all Δz small enough (that is, whenever $\Delta z<\delta$),

$$
\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|<\frac{1}{|\Delta z|}(\quad)=\epsilon .
$$

By the definition of limit,

$$
\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z) .
$$

Examples. Consider C, the circle of radius 2 centered at the origin.
Let $g(z)=\frac{1}{z^{2}}$ and $f(z)=\frac{1}{z}$.
(1) $G(z)=$ \qquad is analytic on $D_{1}=$ \qquad and $G^{\prime}(z)=$ \qquad _.

Therefore, $G(z)$ is an antiderivative for $g(z)$ on the domain D_{1}, which contains C. By the theorem,

$$
\int_{C} \frac{1}{z^{2}} d z=0 .
$$

(2) Does $f(z)$ have an antiderivative on some domain containing C ?

How can we use the theorem to compute $\int_{C} \frac{1}{z} d z ?$

