Math 122B: Complex Variables

Integration

Recall the definitions of are, simple arc and smooth arc (see §38). A contour is a continuous,
piecewise smooth arc. (So any parameterization z(t)(a < ¢t < b) of a contour C' is continous
and differentiable, with 2/(¢) piecewise continuous on [a, b].) Also recall the definitions of closed
contour and stmple closed contour.

Definition. Given a contour C' and a function f(z) that is piecewise continuous along C, we

define the contour integral
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where z(t)(a <t < b) is any parameterization of C.

Notes.

e In particular, this definition asserts that the value of fab flz(®)]2'(t) dt is the same for all
parameterizations of the contour C'.

Proof. Given two parameterizations of C, z(t)(a <t < b) and Z(7)(a < 7 < f3), there exists a
one-to-one function ¢ : [, 5] — [a, b] such that t = (7') for every a < 7 < /3 (and also such that
¢ > 0 since the orientation stays the same!) Then, Z(7) = z(¢(7)), and Z'(7) = 2/(¢(7)) ¢ (7).
By making the change of variables ¢t = ¢(7),
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e Consider a contour C' parameterized by z(t)(a < t < b); —C is the contour described by
the same set of points traversed in the opposite direction. For example, the parameterization
w(s) = z(—s)(—b < s < —a) describes the contour —C. Make the change of variables s = —¢:

/f W—/f t)dt = / Tl ds(/f
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e The fundamental theorem of calculus holds for integrals of complex-valued functions of a real
variable. If w(t) = u(t)+iv(t) has an antiderivative — that is, if there exists W (t) = U(t)+iV (¢)
such that U'(t) = u(t) and V'(t) = v(t) — then,

/abw(t)dt:/abu(t)dtﬂ'/:U(t)dt:(](t)

= [U(b) +iV(b)] — [U(a) +iV(a)] = W(b) — W(a).
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Theorem (§42). Let f(z) be continuous on a domain D.

(a) There exists an analytic function F(z) such that F'(z) = f(z) in the domain D
if and only if
(b) [, f(2)dz =0 for all closed contours that lie entirely in the domain D

Note. The statement (b) is also exactly the same as

(c) For all fired 21,2 € D, [, f(2)dz = [, f(z)dz

for all contours Cy,Cy (lying entirely in D) from 2z to zs.

Clearly (c) implies (b) (z; = 29 for all closed contours). For the other direction, given C and
(s starting and ending at the same points, just notice that C; U —C5 is a closed contour!

Proof of Theorem (§42).

[(a) = (b)] Assume that there exists an antiderivative F'(z) of the function f(z).
Given a contour C' inside D, let z(t)(a <t < b) be a parameterization of C'. Then

b

/Cf(Z) dz = /Cf(Z(t))Z’(t) dt = F(z(t)) | = F(z(b) = F(z(a)) = F(z) — F(z1)

t=a

since the fundamental theorem of calculus holds when integrating complex-valued functions of
a real variable — and F'(z(t)) is an antiderivative for f(z(¢))z’(t). (Check this using the chain
rule! See §38 Exercise 5.) In particular, for any closed contour C', [ f(z)dz = 0.

[(b) = (a)] Assume [, f(2) dz = 0 for every closed contour C' inside D.
Define the function F': D — C by

F(z) = /0 f(2)dz

where the integration can be taken over any contour C' from 0 to z (by assumption the integral
will have the same value for every such contour).

Now, we just need to prove that F’'(z) = f(z) for every z € D! Fix z € D. For any Az # 0,

compute

F(z+ Az) — F(2)

Az
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Since f(z) = f(2) [E/ dw] = E/ dw, we can combine these integrals to show
F(z+ Az) — F(2) 1 /
‘ Az — 1@ =15 dw

Finally, given € > 0, since f is continuous at z € D, we know that there exists 6 > 0 such that



Therefore, for all Az small enough (that is, whenever Az < §),

F(z+ Az) — F(2) 1
Az —f(Z) <‘AZ‘( )26.

By the definition of limit,

Examples. Consider C', the circle of radius 2 centered at the origin.

Let g(2) = % and f(z) = %

(1) G(») = is analytic on D; = and G'(z) =

Therefore, G(z) is an antiderivative for g(z) on the domain D;, which contains C.
By the theorem,
1
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(2) Does f(z) have an antiderivative on some domain containing C?

1
How can we use the theorem to compute / —dz?
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