Math 122B: Complex Variables

Integration

Recall the definitions of arc, simple arc and smooth arc (see §38). A contour is a continuous, piecewise smooth arc. (So any parameterization $z(t)(a \le t \le b)$ of a contour C is continuous and differentiable, with z'(t) piecewise continuous on [a, b].) Also recall the definitions of closed contour and simple closed contour.

Definition. Given a contour C and a function f(z) that is piecewise continuous along C, we define the *contour integral*

$$\int_C f(z) \, dz = \int_a^b f[z(t)] z'(t) \, dt$$

where $z(t)(a \le t \le b)$ is any parameterization of C.

Notes.

• In particular, this definition asserts that the value of $\int_a^b f[z(t)]z'(t) dt$ is the same for all parameterizations of the contour C.

Proof. Given two parameterizations of C, $z(t)(a \le t \le b)$ and $Z(\tau)(\alpha \le \tau \le \beta)$, there exists a one-to-one function $\phi : [\alpha, \beta] \to [a, b]$ such that $t = \phi(\tau)$ for every $\alpha \le \tau \le \beta$ (and also such that $\phi' > 0$ since the orientation stays the same!) Then, $Z(\tau) = z(\phi(\tau))$, and $Z'(\tau) = z'(\phi(\tau))\phi'(\tau)$. By making the change of variables $t = \phi(\tau)$,

$$\int_{a}^{b} f[z(t)]z'(t) \, dt = \int_{\alpha}^{\beta} f[z(\phi(\tau))]z'(\phi(\tau)) \left(\phi'(\tau) \, d\tau\right) = \int_{\alpha}^{\beta} f[Z(\tau)]Z'(\tau) \, d\tau$$

• Consider a contour C parameterized by $z(t)(a \le t \le b)$; -C is the contour described by the same set of points traversed in the opposite direction. For example, the parameterization $w(s) = z(-s)(-b \le s \le -a)$ describes the contour -C. Make the change of variables s = -t:

$$\int_{C} f(z) dz = \int_{a}^{b} f[z(t)]z'(t) dt = \int_{-a}^{-b} f[z(-s)]z'(-s) (-ds) = \int_{-a}^{-b} f[w(s)]w'(s) ds$$
$$= -\int_{-b}^{-a} f[w(s)]w'(s) ds = -\int_{-C} f(z) dz.$$

• The fundamental theorem of calculus holds for integrals of complex-valued functions of a real variable. If w(t) = u(t) + iv(t) has an antiderivative – that is, if there exists W(t) = U(t) + iV(t) such that U'(t) = u(t) and V'(t) = v(t) – then,

$$\int_{a}^{b} w(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{t} v(t) dt = U(t) \Big|_{a}^{b} + iV(t) \Big|_{a}^{b} = U(b) - U(a) + iV(b) - iV(a)$$
$$= [U(b) + iV(b)] - [U(a) + iV(a)] = W(b) - W(a).$$

Theorem (§42). Let f(z) be continuous on a domain D.

- (a) There exists an analytic function F(z) such that F'(z) = f(z) in the domain D if and only if
- (b) $\int_C f(z) dz = 0$ for all closed contours that lie entirely in the domain D

Note. The statement (b) is also exactly the same as

(c) For all fixed $z_1, z_2 \in D$, $\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$ for all contours C_1, C_2 (lying entirely in D) from z_1 to z_2 .

Clearly (c) implies (b) $(z_1 = z_2 \text{ for all closed contours})$. For the other direction, given C_1 and C_2 starting and ending at the same points, just notice that $C_1 \cup -C_2$ is a closed contour!

Proof of Theorem (§42).

 $[(a) \Rightarrow (b)]$ Assume that there exists an antiderivative F(z) of the function f(z). Given a contour C inside D, let $z(t)(a \le t \le b)$ be a parameterization of C. Then

$$\int_C f(z) \, dz = \int_C f(z(t)) z'(t) \, dt = F(z(t)) \, \Big|_{t=a}^b = F(z(b)) - F(z(a)) = F(z_2) - F(z_1)$$

since the fundamental theorem of calculus holds when integrating complex-valued functions of a real variable – and F(z(t)) is an antiderivative for f(z(t))z'(t). (Check this using the chain rule! See §38 Exercise 5.) In particular, for any closed contour C, $\int_C f(z) dz = 0$.

 $[(b) \Rightarrow (a)]$ Assume $\int_C f(z) dz = 0$ for every closed contour C inside D. Define the function $F: D \to \mathbb{C}$ by

$$F(z):=\int_0^z f(z)\,dz$$

where the integration can be taken over any contour C from 0 to z (by assumption the integral will have the same value for every such contour).

Now, we just need to prove that F'(z) = f(z) for every $z \in D$! Fix $z \in D$. For any $\Delta z \neq 0$, compute

$$\frac{F(z + \Delta z) - F(z)}{\Delta z} =$$

Since $f(z) = f(z) \left[\frac{1}{\Delta z} \int dw \right] = \frac{1}{\Delta z} \int$

dw, we can combine these integrals to show

$$\frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \bigg| = \frac{1}{|\Delta z|} \bigg| \int dw$$

Finally, given $\epsilon > 0$, since f is continuous at $z \in D$, we know that there exists $\delta > 0$ such that

Therefore, for all Δz small enough (that is, whenever $\Delta z < \delta$),

$$\left|\frac{F(z+\Delta z) - F(z)}{\Delta z} - f(z)\right| < \frac{1}{|\Delta z|} (\qquad) = \epsilon$$

By the definition of limit,

$$\lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = f(z).$$

Examples. Consider C, the circle of radius 2 centered at the origin. Let $g(z) = \frac{1}{z^2}$ and $f(z) = \frac{1}{z}$.

(1) G(z) =_____ is analytic on $D_1 =$ _____ and G'(z) =_____.

Therefore, G(z) is an antiderivative for g(z) on the domain D_1 , which contains C. By the theorem,

$$\int_C \frac{1}{z^2} dz = 0.$$

(2) Does f(z) have an antiderivative on some domain containing C?

How can we use the theorem to compute $\int_C \frac{1}{z} dz$?