## $\underline{\text { Types of Real Integrals }}$

I. Integrals of the form P.V. $\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} d x$ where $p(x)$ and $q(x)$ are polynomials and $\mathrm{q}(\mathrm{x})$ has no zeros (for $-\infty<\mathrm{x}<\infty$ )

We will consider the complex function $f(z)=\frac{p(z)}{q(z)}$ and evaluate its integral along the following contour $\gamma$ :

which consists of the line $L_{R}(-R<x<R)$ and of $\widehat{C}_{R}$, the upper-half circle centered at the origin.

Let $R$ be large enough that all poles of $f(z)$ in the upper-half plane $\left(z_{1}, \ldots, z_{n}\right)$ are located inside the closed contour $\gamma$. Then, using residue theory,

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)
$$

The value of the integral is found by splitting the integral over $\gamma$ into two parts. In the limit as $R \rightarrow \infty$, the integral over $L_{R}$ will give the desired real integral, and the integral over $\widehat{C}_{R}$ will go to zero. Following this plan, let $\alpha$ be the constant $2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)$, so the above equality becomes

$$
\int_{L_{R}} f(z) d z+\int_{\widehat{C}_{R}} f(z) d z=\alpha
$$

Then, parameterizing $L_{R}$ by $z=x(-R<x<R)$, we have

$$
\int_{-R}^{R} f(x) d x+\int_{\widehat{C}_{R}} f(z) d z=\alpha .
$$

Finally, we take the limit of both sides as $R \rightarrow \infty$ :

$$
\int_{-\infty}^{\infty} f(x) d x+\lim _{R \rightarrow \infty} \int_{\widehat{C}_{R}} f(z) d z=\alpha
$$

All that remains is to show that $\int_{\widehat{C}_{R}} f(z) d z \rightarrow 0$. This is done by estimating the integral as follows:

$$
\left|\int_{\widehat{C}_{R}} f(z) d z\right| \leq\left|\widehat{C}_{R}\right| \max _{z \in \widehat{C}_{R}}|f(z)| \leq \pi R \max _{|z|=R}|f(z)|
$$

Since $f(z)=\frac{p(z)}{q(z)}$, we estimate $|f(z)|$ by using the triangle inequality to bound $|p(z)|$, but in order to bound $\frac{1}{|q(z)|}$, remember that we need $|q(z)|$ larger than something! As an example, let $p(z)=z^{2}+1$ and let $q(z)=2 z^{6}+3$. Using the triangle inequality, $|p(z)|=\left|z^{2}+1\right| \leq$ $|z|^{2}+1$, which equals $R^{2}+1$ on the circle $|z|=R$. For the denominator, use the inequality $\left|2 z^{6}+3\right| \geq\left.|2| z\right|^{6}-3 \mid$, which equals $2 R^{6}-3$ on the circle $|z|=R$ (if $R^{6}>\frac{3}{2}$ ). This implies that $\frac{1}{\left|2 z^{6}+3\right|} \leq \frac{1}{2 R^{6}-3}$ on the circle. If our final bound for the integral is something that goes to zero as $R$ goes to infinity - that is,

$$
\left|\int_{\widehat{C}_{R}} f(z) d z\right| \leq F(R) \rightarrow 0 \text { as } R \rightarrow \infty
$$

- then, the limit of the integral must be 0 . (In the example above, $F(R)=\frac{R^{2}+1}{2 R^{6}-3}$.) Finally, using this we have found the value of the real integral:

$$
\int_{-\infty}^{\infty} f(x) d x=\alpha .
$$

## II. Integrals of the form P.V. $\int_{-\infty}^{\infty} f(x) \sin (x) d x\left(\right.$ or P.V. $\int_{-\infty}^{\infty} f(x) \cos (x) d x$ ) where $f(x)$ has no singularities on the real axis.

As before, we will integrate a complex function, but we won't simply replace $x$ with $z$. Instead, we consider the complex function

$$
g(z)=f(z) e^{i z}=f(z) \cos (z)+i f(z) \sin (z)
$$

Using the same contour $\gamma$ (with $R$ large enough that all poles of $f(z)$ in the upper-half plane $\left(z_{1}, \ldots, z_{k}\right)$ are inside $\gamma$ ),

$$
\int_{\gamma} f(z) e^{i z} d z=\alpha \quad \text { where } \alpha=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} g(z)
$$

Breaking up the integral over $\gamma$ into two parts, we have

$$
\int_{-R}^{R} f(x) \cos (x) d x+i \int_{-R}^{R} f(x) \sin (x) d x+\int_{\widehat{C}_{R}} f(z) e^{i z} d z=\alpha .
$$

Again, we only need to take the limit as $R \rightarrow \infty$ and show that $\int_{\widehat{C}_{R}} f(z) e^{i z} d z \rightarrow 0$. Then, matching up the real and imaginary parts of both sides,

$$
\int_{-\infty}^{\infty} f(x) \cos (x) d x=\operatorname{Re} \alpha \quad \text { and } \quad \int_{-\infty}^{\infty} f(x) \sin (x) d x=\operatorname{Im} \alpha
$$

To show that the integral over the half-circle disappears in the limit, we often need Jordan's inequality: $\int_{0}^{2 \pi} e^{-R \sin (\theta)} d \theta<\frac{\pi}{R}$ (for $R>0$ ). If $f$ is a polynomial with large enough power in the denominator (so with enough decay at infinity), we can use the easier method of bounding the integral, as in II - but if not, we require Jordan's inequality. For example, consider $\int_{\widehat{C}_{R}} \frac{z e^{i z}}{z^{2}+1} d z$. Parameterizing the upper-half circle, we have

$$
\left|\int_{\widehat{C}_{R}} \frac{z e^{i z}}{z^{2}+1} d z\right|=\left|\int_{0}^{2 \pi} \frac{\left(R e^{i \theta}\right) e^{i R e^{i \theta}}}{R^{2} e^{2 i \theta}+1} i R e^{i \theta} d \theta\right| \leq \frac{R^{2}}{R^{2}-1} \int_{0}^{2 \pi} e^{-R \sin \theta} d \theta \leq \frac{\pi R}{R^{2}-1}
$$

In the last step, we used Jordan's inequality... without this extra decay from the integral, we can't prove that the right-hand side goes to zero!

## III. Integrals of the form $\int_{0}^{2 \pi} \mathbf{F}(\cos \theta, \sin \theta) \mathbf{d} \theta$, where $\mathbf{F}\left(\frac{\mathbf{z}+\mathbf{z}^{-1}}{2}, \frac{\mathbf{z}-\mathbf{z}^{-1}}{2 \mathbf{i}}\right)$ has no poles on the unit circle.

Notes: The integral may be taken over any interval of length $2 \pi$ since the function is periodic. Also, you may see integrals where, for example, $\theta$ goes from 0 to $\pi$ - by symmetry, these often equal one-half the value of the integral from 0 to $2 \pi$ !

The integral in this case is really a parameterized version of a contour integral on the unit circle. Parameterizing the unit circle by $z(\theta)=e^{i \theta}(0 \leq \theta \leq 2 \pi$ - or any other interval of length $2 \pi!$ ), we see that on the unit circle $\cos (\theta)$ and $\sin (\theta)$ can be written in terms of $z$ as

$$
\cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2}=\frac{z+z^{-1}}{2} \quad \text { and } \quad \sin (\theta)=\frac{e^{i \theta}-e^{-i \theta}}{2 i}=\frac{z-z^{-1}}{2 i} .
$$

Therefore,

$$
\int_{0}^{2 \pi} F(\cos \theta, \sin \theta) d \theta=\int_{C_{1}} F\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2 i}\right) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} F\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2 i}\right)
$$

Make sure the residues in the sum are only for the poles inside the unit circle!!

## IV. Integrals that require different contours.

Notes: These are integrals for which the complex function we want to integrate has a pole or a branch point somewhere on the real axis. In either cases, a contour that avoids going through the pole or the branch cut is needed!

## Examples:

- $\int_{0}^{\infty} \frac{\sin \mathrm{x}}{\mathrm{x}} \mathrm{dx}=\frac{\pi}{2}$

This is similar to case II, except that the complex function $g(z)=\frac{e^{i z}}{z}$ has a pole at $z=0$ ! Consider the following contour $\gamma=L_{1} \cup\left(-\widehat{C}_{\rho}\right) \cup L_{2} \cup \widehat{C}_{R}$ (where $R>\rho>0$ ):


The function is analytic inside the contour, so for any $R>\rho>0$,

$$
\int_{\gamma} \frac{e^{i z}}{z} d z=0
$$

Splitting the integral up, and parameterizing $-L_{1}$ by $z=-r(\rho<r<R)$ and $L_{2}$ by $z=r(\rho<r<R)$,

$$
-\int_{\rho}^{R} \frac{e^{-i r}}{-r}(-d r)-\int_{\widehat{C}_{\rho}} \frac{e^{i z}}{z} d z+\int_{\rho}^{R} \frac{e^{i r}}{r} d r+\int_{\widehat{C}_{R}} \frac{e^{i z}}{z} d z=0 .
$$

Using Jordan's inequality, we can show that $\lim _{R \rightarrow \infty} \int_{\widehat{C}_{R}} \frac{e^{i z}}{z} d z=0$. Since $z=0$ is a simple pole of $g$, we will use the Laurent series of $g$ around 0 to show that

$$
\lim _{\rho \rightarrow 0} \int_{\widehat{C}_{\rho}} \frac{e^{i z}}{z} d z=i \pi \operatorname{Res}_{z=0} g(z)
$$

The Laurent series of $g(z)$ is $\frac{b_{o}}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}$, where $b_{o}=\operatorname{Res}_{z=0} g(z)$. Then,

$$
\begin{aligned}
\int_{\widehat{C}_{\rho}} \frac{e^{i z}}{z} d z & =\int_{\widehat{C}_{\rho}} \frac{b_{o}}{z} d z+\sum_{n=0}^{\infty} a_{n} \int_{\widehat{C}_{\rho}} z^{n} d z=\int_{0}^{\pi} \frac{i \rho e^{i \theta}}{\rho e^{i \theta}} d \theta+\sum_{n=0}^{\infty} a_{n} \int_{\widehat{C}_{\rho}} z^{n} d z \\
& =i \pi+\sum_{n=0}^{\infty} a_{n} \int_{\widehat{C}_{\rho}} z^{n} d z
\end{aligned}
$$

Simply show that the last sum tends to zero (notice that each of the integrals in the sum can be bounded by $\pi \rho^{n+1}$ !). Using these limits (notice that $b_{o}=1$ in this case; also $\left.e^{i r}-e^{-i r}=2 i \sin (r)\right)$,

$$
2 i \int_{0}^{\infty} \frac{\sin r}{r} d r=i \pi
$$

- $\int_{0}^{\infty} \frac{1}{\sqrt{\mathrm{x}}(\mathrm{x}+1)} \mathrm{dx}=\pi$

Notice that $\sqrt{x}$ is simply the positive square root of a postive real number, but when we consider the complex function $f(z)=\frac{z^{-\frac{1}{2}}}{(z+1)}$ specifiying the branch cut is necessary! We shall use the branch $0<\arg z<2 \pi$; therefore, $f(z)$ is analytic away from the branch cut $\arg z=0$ and away from the pole at $z=-1$. We will use the contour $\gamma_{\epsilon}$ :


We will take the limit $\epsilon \rightarrow 0$ before taking limits in $\rho$ and $R$; therefore, it is fine to simplify by considering the contour as pictured on page 274 of your book where $\epsilon=0$. The interesting part is what happens on the two lines: $L_{1}$ is parameterized by $z(x)=x+i \epsilon$, and $-L_{2}$ is parameterized by $z(x)=x-i \epsilon$ (with $\sqrt{\rho^{2}-\epsilon^{2}} \leq x \leq \sqrt{R^{2}-\epsilon^{2}}$ - of course, this will just become $\rho \leq x \leq R$ when we take the limit $\epsilon \rightarrow 0$.)

$$
\int_{L_{1}} f(z) d z=\int_{\sqrt{\rho^{2}-\epsilon^{2}}}^{\sqrt{R^{2}-\epsilon^{2}}} \frac{(x+i \epsilon)^{-\frac{1}{2}}}{(x+i \epsilon)+1} d x \quad \text { and } \quad \int_{L_{2}} f(z) d z=\int_{\sqrt{\rho^{2}-\epsilon^{2}}}^{\sqrt{R^{2}-\epsilon^{2}}} \frac{(x-i \epsilon)^{-\frac{1}{2}}}{(x-i \epsilon)+1} d x
$$

Make sure to use the branch cut when evaluating $(x \pm i \epsilon)^{-\frac{1}{2}}$ ! Since $x+i \epsilon$ is in the first quadrant, but $x-i \epsilon$ is in the fourth, when we write these in polar coordinates using their arguments, we have

$$
\begin{aligned}
& (x+i \epsilon)=\sqrt{x^{2}+\epsilon^{2}} e^{i \arg (x+i \epsilon)} \rightarrow x \cdot e^{0} \text { as } \epsilon \rightarrow 0 \\
& (x-i \epsilon)=\sqrt{x^{2}+\epsilon^{2}} e^{i \arg (x-i \epsilon)} \rightarrow x \cdot e^{2 \pi i} \text { as } \epsilon \rightarrow 0
\end{aligned}
$$

Therefore, as $\epsilon \rightarrow 0$,

$$
\begin{aligned}
& \int_{L_{1}} f(z) d z \rightarrow \int_{\rho}^{R} \frac{\frac{1}{\sqrt{x}}}{(x+1)} d x \\
& \int_{L_{2}} f(z) d z \rightarrow-\int_{\rho}^{R} \frac{\frac{1}{\sqrt{x}} e^{-i \pi}}{(x+1)} d x
\end{aligned}
$$

In the book, these are given as equalities since they assume the limit has already been taken - that is, $L_{1}$ is the line on the real axis, but with all limits being taken from above the line, and $L_{2}$ is the line on the real axis with the limits taken from below. Finally, let $\rho \rightarrow 0$ and $R \rightarrow \infty$ (and estimate to show that the integrals of $f$ on both $\widehat{C}_{\rho}$ and $\widehat{C}_{R}$ go to zero!)

$$
2 \int_{0}^{\infty} \frac{1}{\sqrt{x}(x+1)} d x=2 \pi i \operatorname{Res}_{z=-1} f(z)=2 \pi i\left((-1)^{-\frac{1}{2}}\right)=2 \pi i\left(e^{-i \frac{\pi}{2}}\right)=2 \pi
$$

