
Math 122B: Complex Variables

Types of Real Integrals

I. Integrals of the form P.V.

∫ ∞

−∞

p(x)

q(x)
dx where p(x) and q(x) are polynomials and

q(x) has no zeros (for −∞ < x < ∞)

We will consider the complex function f(z) =
p(z)

q(z)
and evaluate its integral along the fol-

lowing contour γ:

which consists of the line LR (−R < x < R) and of ĈR, the upper-half circle centered at the
origin.

Let R be large enough that all poles of f(z) in the upper-half plane (z1, ..., zn) are located
inside the closed contour γ. Then, using residue theory,

∫

γ

f(z) dz = 2πi

n∑

k=1

Res
z=zk

f(z).

The value of the integral is found by splitting the integral over γ into two parts. In the limit
as R → ∞, the integral over LR will give the desired real integral, and the integral over ĈR

will go to zero. Following this plan, let α be the constant 2πi
∑n

k=1 Resz=zk
f(z), so the above

equality becomes ∫

LR

f(z) dz +

∫

bCR

f(z) dz = α.

Then, parameterizing LR by z = x (−R < x < R), we have

∫ R

−R

f(x) dx +

∫

bCR

f(z) dz = α.



Finally, we take the limit of both sides as R → ∞:
∫ ∞

−∞
f(x) dx + lim

R→∞

∫

bCR

f(z) dz = α.

All that remains is to show that
∫

bCR
f(z) dz → 0. This is done by estimating the integral as

follows: ∣∣∣∣
∫

bCR

f(z) dz

∣∣∣∣ ≤ |ĈR|max
z∈ bCR

|f(z)| ≤ πR max
|z|=R

|f(z)|

Since f(z) =
p(z)

q(z)
, we estimate |f(z)| by using the triangle inequality to bound |p(z)|, but in

order to bound
1

|q(z)| , remember that we need |q(z)| larger than something! As an example,

let p(z) = z2 + 1 and let q(z) = 2z6 + 3. Using the triangle inequality, |p(z)| = |z2 + 1| ≤
|z|2 + 1, which equals R2 + 1 on the circle |z| = R. For the denominator, use the inequality
|2z6 +3| ≥ |2|z|6 − 3|, which equals 2R6 − 3 on the circle |z| = R (if R6 > 3

2
). This implies that

1

|2z6 + 3| ≤
1

2R6 − 3
on the circle. If our final bound for the integral is something that goes to

zero as R goes to infinity — that is,
∣∣∣∣
∫

bCR

f(z) dz

∣∣∣∣ ≤ F (R) → 0 as R → ∞

— then, the limit of the integral must be 0. (In the example above, F (R) =
R2 + 1

2R6 − 3
.) Finally,

using this we have found the value of the real integral:
∫ ∞

−∞
f(x) dx = α.

II. Integrals of the form P.V.
∫ ∞
−∞ f(x)sin(x)dx (or P.V.

∫ ∞
−∞ f(x)cos(x)dx) where f(x)

has no singularities on the real axis.

As before, we will integrate a complex function, but we won’t simply replace x with z. In-
stead, we consider the complex function

g(z) = f(z) eiz = f(z) cos(z) + if(z) sin(z).

Using the same contour γ (with R large enough that all poles of f(z) in the upper-half plane
(z1, ..., zk) are inside γ),

∫

γ

f(z)eiz dz = α where α = 2πi

n∑

k=1

Res
z=zk

g(z).

Breaking up the integral over γ into two parts, we have

∫ R

−R

f(x) cos(x) dx + i

∫ R

−R

f(x) sin(x) dx +

∫

bCR

f(z)eiz dz = α.



Again, we only need to take the limit as R → ∞ and show that
∫

bCR
f(z)eiz dz → 0. Then,

matching up the real and imaginary parts of both sides,

∫ ∞

−∞
f(x) cos(x) dx = Re α and

∫ ∞

−∞
f(x) sin(x) dx = Im α.

To show that the integral over the half-circle disappears in the limit, we often need Jordan’s

inequality:
∫ 2π

0
e−R sin(θ) dθ < π

R
(for R > 0). If f is a polynomial with large enough power in

the denominator (so with enough decay at infinity), we can use the easier method of bounding
the integral, as in II — but if not, we require Jordan’s inequality. For example, consider∫

bCR

zeiz

z2+1
dz. Parameterizing the upper-half circle, we have

∣∣∣∣
∫

bCR

zeiz

z2 + 1
dz

∣∣∣∣ =

∣∣∣∣∣

∫ 2π

0

(Reiθ)eiReiθ

R2e2iθ + 1
iReiθ dθ

∣∣∣∣∣ ≤
R2

R2 − 1

∫ 2π

0

e−R sin θdθ ≤ πR

R2 − 1
.

In the last step, we used Jordan’s inequality... without this extra decay from the integral, we
can’t prove that the right-hand side goes to zero!

III. Integrals of the form
∫

2π

0
F(cos θ, sin θ)dθ, where F( z+z

−1

2
, z−z

−1

2i
) has no poles on

the unit circle.

Notes: The integral may be taken over any interval of length 2π since the function is pe-
riodic. Also, you may see integrals where, for example, θ goes from 0 to π — by symmetry,
these often equal one-half the value of the integral from 0 to 2π!

The integral in this case is really a parameterized version of a contour integral on the unit
circle. Parameterizing the unit circle by z(θ) = eiθ (0 ≤ θ ≤ 2π — or any other interval of
length 2π!), we see that on the unit circle cos(θ) and sin(θ) can be written in terms of z as

cos(θ) =
eiθ + e−iθ

2
=

z + z−1

2
and sin(θ) =

eiθ − e−iθ

2i
=

z − z−1

2i
.

Therefore,

∫ 2π

0

F (cos θ, sin θ) dθ =

∫

C1

F ( z+z−1

2
, z−z−1

2i
) dz = 2πi

n∑

k=1

Res
z=zk

F ( z+z−1

2
, z−z−1

2i
).

Make sure the residues in the sum are only for the poles inside the unit circle!!

IV. Integrals that require different contours.

Notes: These are integrals for which the complex function we want to integrate has a pole or a
branch point somewhere on the real axis. In either cases, a contour that avoids going through
the pole or the branch cut is needed!

Examples:



•
∫ ∞

0

sin x

x
dx =

π

2

This is similar to case II, except that the complex function g(z) =
eiz

z
has a pole at

z = 0! Consider the following contour γ = L1 ∪ (−Ĉρ) ∪ L2 ∪ ĈR (where R > ρ > 0):

The function is analytic inside the contour, so for any R > ρ > 0,

∫

γ

eiz

z
dz = 0.

Splitting the integral up, and parameterizing −L1 by z = −r (ρ < r < R) and L2 by
z = r (ρ < r < R),

−
∫ R

ρ

e−ir

−r
(−dr) −

∫

bCρ

eiz

z
dz +

∫ R

ρ

eir

r
dr +

∫

bCR

eiz

z
dz = 0.

Using Jordan’s inequality, we can show that lim
R→∞

∫
bCR

eiz

z
dz = 0. Since z = 0 is a simple

pole of g, we will use the Laurent series of g around 0 to show that

lim
ρ→0

∫

bCρ

eiz

z
dz = iπ Res

z=0
g(z).

The Laurent series of g(z) is
bo

z
+

∞∑

n=0

anzn, where bo = Res
z=0

g(z). Then,

∫

bCρ

eiz

z
dz =

∫

bCρ

bo

z
dz +

∞∑

n=0

an

∫

bCρ

zn dz =

∫ π

0

iρeiθ

ρeiθ
dθ +

∞∑

n=0

an

∫

bCρ

zn dz

= iπ +
∞∑

n=0

an

∫

bCρ

zn dz.

Simply show that the last sum tends to zero (notice that each of the integrals in the
sum can be bounded by πρn+1!). Using these limits (notice that bo = 1 in this case; also
eir − e−ir = 2i sin(r)),

2i

∫ ∞

0

sin r

r
dr = iπ.



•
∫ ∞

0

1√
x(x + 1)

dx = π

Notice that
√

x is simply the positive square root of a postive real number, but when

we consider the complex function f(z) =
z−

1

2

(z + 1)
specifiying the branch cut is necessary!

We shall use the branch 0 < arg z < 2π; therefore, f(z) is analytic away from the branch
cut arg z = 0 and away from the pole at z = −1. We will use the contour γε:

We will take the limit ε → 0 before taking limits in ρ and R; therefore, it is fine to
simplify by considering the contour as pictured on page 274 of your book where ε = 0.
The interesting part is what happens on the two lines: L1 is parameterized by z(x) = x+iε,
and −L2 is parameterized by z(x) = x− iε (with

√
ρ2 − ε2 ≤ x ≤

√
R2 − ε2 — of course,

this will just become ρ ≤ x ≤ R when we take the limit ε → 0.)
∫

L1

f(z) dz =

∫ √
R2−ε2

√
ρ2−ε2

(x + iε)−
1

2

(x + iε) + 1
dx and

∫

L2

f(z) dz =

∫ √
R2−ε2

√
ρ2−ε2

(x − iε)−
1

2

(x − iε) + 1
dx

Make sure to use the branch cut when evaluating (x ± iε)−
1

2 ! Since x + iε is in the first
quadrant, but x− iε is in the fourth, when we write these in polar coordinates using their
arguments, we have

(x + iε) =
√

x2 + ε2 ei arg(x+iε) → x · e0 as ε → 0

(x − iε) =
√

x2 + ε2 ei arg(x−iε) → x · e2πi as ε → 0.

Therefore, as ε → 0, ∫

L1

f(z) dz →
∫ R

ρ

1√
x

(x + 1)
dx

∫

L2

f(z) dz →−
∫ R

ρ

1√
x
e−iπ

(x + 1)
dx.

In the book, these are given as equalities since they assume the limit has already been
taken – that is, L1 is the line on the real axis, but with all limits being taken from above
the line, and L2 is the line on the real axis with the limits taken from below. Finally, let
ρ → 0 and R → ∞ (and estimate to show that the integrals of f on both Ĉρ and ĈR go
to zero!)

2

∫ ∞

0

1√
x(x + 1)

dx = 2πi Res
z=−1

f(z) = 2πi
(
(−1)−

1

2

)
= 2πi

(
e−i π

2

)
= 2π


