
Math 122B: Complex Variables

Review

The field of complex numbers is defined as the set of ordered pairs of real numbers with the
addition and multiplication operations defined by

(x, y) + (v, w) = (x + v, y + w)

(x, y) · (v, w) = (xv − yw, xw + yv).

The zero element is (0, 0) and the identity element is (1, 0). If we identify every real number
x with the complex number (x, 0), then in terms of the special number i := (0, 1), we can
represent any complex number z = (x, y) as z = x + iy.

A function f(z) of a complex variable z is said to be differentiable at a point zo with
derivative

f ′(zo) = lim
∆z→0

f(zo + ∆z) − f(zo)

∆z

provided the above limit exists.

As a consequence of this definition, whenever a function f(z) = u(z)+ iv(z) is differentiable
at a point zo = xo + iyo, the Cauchy-Riemann equations for the real-valued functions u(z) and
v(z) must hold at zo.
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We will interchangably use the symbol u for the function u(z) of a complex variable z or the
function u(x, y) of two real variables x and y (where of course u(x, y) = u(x + iy)). If f is
differentiable everywhere, f is called analytic in the complex plane or entire. In this case,
ux = vy and uy = −vx at all points; notice this implies that both u and v are harmonic!
Moreover, the derivative of f at a point z = x + iy can be computed in terms of the partial
derivatives of u and v with respect to x (or y):

f ′(z) = ux(x, y) + ivx(x, y) (= vy(x, y) − iuy(x, y)).

There are functions u(x, y) and v(x, y) such that the Cauchy-Riemann equations hold but
u(z) + iv(z) is not differentiable! To guarantee that u(z) + iv(z) is differentiable, we need
the first-order partial derivatives ux, uy, vx, and vy to exist and to satisfy the Cauchy-Riemann
equations and also to be continuous.

If a function f(z) is analytic on a set S in the complex plane (i.e., f(z) is differentiable at
each point in some open set containing S), one consequence is the Cauchy-Riemann equations.



Another interesting consequence that we will prove this quarter is that if there are enough
points in the set S where f(z) = 0, then f(z) ≡ 0 everywhere on S. “Enough points” basically
means that the points pile up somewhere in S. Certainly, if f(z) = 0 for all points on some
line segment in S, then f ≡ 0 in S. For another example, if f is an entire function such that
f( 1

n
) = 0 for all positive integers n, then the function must be 0 everywhere in the complex

plane! (The points 1/n pile up at 0.) However, it is possible to have f(n) = 0 for all integers
n and still have f(z) 6≡ 0.

The exponential function is the entire function defined by

ez := exeiy = ex cos(y) + iex sin(y)

for all complex numbers z = x + iy. (Alternatively, ez could have been defined by the familiar

infinite power series
∑

∞

j=0
zj

j!
– we will prove later that for every z, this sum yields the complex

number ez defined above.)
With this definition, we can compute that ez1ez2 = ez1+z2 and therefore that

(cos(z) + i sin(z))n = cos(nz) + i sin(nz).

Also, it is clear that ez is entire, is never equal to 0, and is periodic in y with period 2π.

We would like to define the logarithm as the inverse of the exponential function. Therefore,
for each fixed z, we want to solve ew = z to find w = log(z). Using polar coordinates, let
z = reiθ for some r > 0 and θ. In order to solve ew = eu+iv = eueiv = reiθ, we clearly need
u = ln(r). However, since eiv is periodic in v, there will be many values of v (differing by
multiples of 2π) such that eiv = eiθ. Therefore, we define log(z) as the multi-valued function
log(z) = ln(r) + iarg(z).

If we want unique values of the logarithm, we must make the choice of which v to use. A
branch of log(z) is a restriction on the angle θ = arg(z) that makes log(z) single-valued. For
example, the principle branch of log(z) is denoted Log(z) and is defined such that −π < θ < π.

Log(z) = ln r + iθ for − π < θ < π

We can prove that any branch of log(z) (i.e., log(z) = ln r + iθ where α < θ < 2π + α for some
α) is analytic (away from its branch cut – the line from the origin with angle α) and that the
derivative is given by

d

dz
log(z) =

1

z
.

Powers of z are defined using the exponential and logarithm functions.

zw := exp(w log(z))

This definition coincides with the usual definition of xy where x and y are real numbers. Typ-
ically, zw will be multi-valued. For example, we can compute that ii = e−arg(i) = e−(4n+1)∗π/2

for n = 0,±1,±2, ....

The trigonometric functions are entire functions defined in terms of the exponential function:

sin(z) :=
eiz − e−iz

2i
; cos(z) :=

eiz + e−iz

2

As with ez, the inverses of sin(z) and cos(z) are multi-valued since these functions are periodic
(in x!)


