Math 122B: Complex Variables

Review

The field of complex numbers is defined as the set of ordered pairs of real numbers with the addition and multiplication operations defined by

$$
\begin{aligned}
& (x, y)+(v, w)=(x+v, y+w) \\
& (x, y) \cdot(v, w)=(x v-y w, x w+y v)
\end{aligned}
$$

The zero element is $(0,0)$ and the identity element is $(1,0)$. If we identify every real number x with the complex number $(x, 0)$, then in terms of the special number $i:=(0,1)$, we can represent any complex number $z=(x, y)$ as $z=x+i y$.

A function $f(z)$ of a complex variable z is said to be differentiable at a point z_{o} with derivative

$$
f^{\prime}\left(z_{o}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{o}+\Delta z\right)-f\left(z_{o}\right)}{\Delta z}
$$

provided the above limit exists.
As a consequence of this definition, whenever a function $f(z)=u(z)+i v(z)$ is differentiable at a point $z_{o}=x_{o}+i y_{o}$, the Cauchy-Riemann equations for the real-valued functions $u(z)$ and $v(z)$ must hold at z_{o}.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} ; \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

We will interchangably use the symbol u for the function $u(z)$ of a complex variable z or the function $u(x, y)$ of two real variables x and y (where of course $u(x, y)=u(x+i y)$). If f is differentiable everywhere, f is called analytic in the complex plane or entire. In this case, $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ at all points; notice this implies that both u and v are harmonic! Moreover, the derivative of f at a point $z=x+i y$ can be computed in terms of the partial derivatives of u and v with respect to x (or y):

$$
f^{\prime}(z)=u_{x}(x, y)+i v_{x}(x, y)\left(=v_{y}(x, y)-i u_{y}(x, y)\right)
$$

There are functions $u(x, y)$ and $v(x, y)$ such that the Cauchy-Riemann equations hold but $u(z)+i v(z)$ is not differentiable! To guarantee that $u(z)+i v(z)$ is differentiable, we need the first-order partial derivatives u_{x}, u_{y}, v_{x}, and v_{y} to exist and to satisfy the Cauchy-Riemann equations and also to be continuous.

If a function $f(z)$ is analytic on a set S in the complex plane (i.e., $f(z)$ is differentiable at each point in some open set containing S), one consequence is the Cauchy-Riemann equations.

Another interesting consequence that we will prove this quarter is that if there are enough points in the set S where $f(z)=0$, then $f(z) \equiv 0$ everywhere on S. "Enough points" basically means that the points pile up somewhere in S. Certainly, if $f(z)=0$ for all points on some line segment in S, then $f \equiv 0$ in S. For another example, if f is an entire function such that $f\left(\frac{1}{n}\right)=0$ for all positive integers n, then the function must be 0 everywhere in the complex plane! (The points $1 / n$ pile up at 0 .) However, it is possible to have $f(n)=0$ for all integers n and still have $f(z) \not \equiv 0$.

The exponential function is the entire function defined by

$$
e^{z}:=e^{x} e^{i y}=e^{x} \cos (y)+i e^{x} \sin (y)
$$

for all complex numbers $z=x+i y$. (Alternatively, e^{z} could have been defined by the familiar infinite power series $\sum_{j=0}^{\infty} \frac{z^{j}}{j!}$ - we will prove later that for every z, this sum yields the complex number e^{z} defined above.)

With this definition, we can compute that $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$ and therefore that

$$
(\cos (z)+i \sin (z))^{n}=\cos (n z)+i \sin (n z)
$$

Also, it is clear that e^{z} is entire, is never equal to 0 , and is periodic in y with period 2π.
We would like to define the logarithm as the inverse of the exponential function. Therefore, for each fixed z, we want to solve $e^{w}=z$ to find $w=\log (z)$. Using polar coordinates, let $z=r e^{i \theta}$ for some $r>0$ and θ. In order to solve $e^{w}=e^{u+i v}=e^{u} e^{i v}=r e^{i \theta}$, we clearly need $u=\ln (r)$. However, since $e^{i v}$ is periodic in v, there will be many values of v (differing by multiples of 2π) such that $e^{i v}=e^{i \theta}$. Therefore, we define $\log (z)$ as the multi-valued function $\log (z)=\ln (r)+i \arg (z)$.

If we want unique values of the logarithm, we must make the choice of which v to use. A branch of $\log (z)$ is a restriction on the angle $\theta=\arg (z)$ that makes $\log (z)$ single-valued. For example, the principle branch of $\log (z)$ is denoted $\log (z)$ and is defined such that $-\pi<\theta<\pi$.

$$
\log (z)=\ln r+i \theta \text { for }-\pi<\theta<\pi
$$

We can prove that any branch of $\log (z)$ (i.e., $\log (z)=\ln r+i \theta$ where $\alpha<\theta<2 \pi+\alpha$ for some α) is analytic (away from its branch cut - the line from the origin with angle α) and that the derivative is given by

$$
\frac{\mathrm{d}}{\mathrm{~d} z} \log (z)=\frac{1}{z}
$$

Powers of z are defined using the exponential and logarithm functions.

$$
z^{w}:=\exp (w \log (z))
$$

This definition coincides with the usual definition of x^{y} where x and y are real numbers. Typically, z^{w} will be multi-valued. For example, we can compute that $i^{i}=e^{-\arg (i)}=e^{-(4 n+1) * \pi / 2}$ for $n=0, \pm 1, \pm 2, \ldots$.

The trigonometric functions are entire functions defined in terms of the exponential function:

$$
\sin (z):=\frac{e^{i z}-e^{-i z}}{2 i} ; \quad \cos (z):=\frac{e^{i z}+e^{-i z}}{2}
$$

As with e^{z}, the inverses of $\sin (z)$ and $\cos (z)$ are multi-valued since these functions are periodic (in x !)

