Math 124A: PDEs

Solving the diffusion (heat) equation

Fix a positive number k£ and consider the diffusion equation on the whole line
(DE) ur = kuy, (on 0 <t <oo,—00 <z < 00)

Properties of the diffusion equation:

o If Si(x,t) and Sy(x,t) are both solutions of (DE) (so (S1): = k(S1). and
(52)¢ = k(52)4z), then the function u(z,t) = a151(x,t) + a5 (z,t) (where a4
and ay are any two numbers) is a solution of (DE).

You know this because the diffusion equation is linear! You can also check it
by taking partial derwatives: Find
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U = 8? 875 (a151 + CLQSQ)
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Check that uy — ku,, = 0!

o If S(x,t) is a solution of (DE), then the function u(x,t) = S(z — y,t)
is a solution of (DE) (where y is any fixed number!)

Check:

ut(x7t) - [S(SC - Y, )]t = St(x - y7t)
Then, ui(x,t) — kug,(z,t) = Si(x — y,t) — kSpe(x — y,t) = 0 since S solves
(DE).

o If S(z,t) is a solution of (DE), then u(z,t) = [ S(z — y,t)g(y)dy is
a solution of (DE) (for any function g of one Varlable)

This is also easy to check simply by differentiating w! (If you can pull deriva-
tives under the integral sign.) Intuitively, we can think of this integral as an
infinite sum. In the integral above, we are summing solutions of (DE), so by



linearity, u should solve (DE). More rigorously, if we partition the line into
intervals of size Ay = %, for each integer k, %g(%) s just some number, and
by the previous property (g(%)Ay) S(x — %, t) solves (DE). By linearity,

—~ [k k
Sp(z,t) = —|S{z——t)A
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is a solution of (DE). Of course, as n gets large, Sy(x,t) — u(z,t)! This
implies that u also solves (DE) (to see this, take limits of both sides of the
equation (Sn)r = k(Sn) e )-

e Finally, if v(z, t) is a solution of (DE), the new function u(zx, t) = v(\/az, at)
is also a solution of (DE) (for any positive number a)!

Check by differentiating (use the chain rule):

ur(x,t) = %[v(\/&x,at)] = (%) (\/Ex,at)%(at) = av;(vaz,at)
Uge (T, 1) = % (ﬁ %) = a v (Vaz, at).

Then, uy — kuz, = 0 at every point (witht > 0).

We will start by solving (DE) with special choice for the initial condition:
The problem (x*) will be

() Sy = kS, 0<t<oo,—00<x<00)
S(z,0) =6(x) (—o0o <z < 00).
The solution S(x,t) that we find is alternately called the source function for

the diffusion equation, Green’s function for the diffusion equation, or the fun-
damental solution of the diffusion equation.

This solution gives us all others! If we want to solve the problem (x)

U = kg, 0<t<oo,—0<zT<0)
() { u(z,0) = ¢o(r) (—o0 <z < 0),

the solution is o
uuxr:/ S(a -y, O)(y)dy.

Why? Well, by our properties of the diffusion equation, this solves (DE) (i.e.,
up = kug,). Also, we can check whether the initial condition holds:

oo

uw0) = [~ st—y.00) = [ 8- oty = o)

o0 —0o0



Since u(z, t) solves (DE) and u(z, 0) = ¢(x), the function u solves the problem
(x).  Intuitively, this is true by linearity of the diffusion equation: We can
write ¢(x) as the integral of the functions ¢(y)d(x—1vy), and since the equation
is linear, the solution u should be the integral of the solutions ¢(y)S(x —y,t),
each of which has initial condition ¢(y)é(x — y).

All we have to do is figure out what the function S(z,t) is! Instead, it
will be easier to solve for () where S = %—g and () solves the problem

Qi = kQr (0 <t <o00,—00< T < 00)

ot ata -} 128

(S = %—g will solve (DE) with S(x,0) = H'(x) = §(z)!) Again, from our

properties of the diffusion equation we know that Q(/ax,at) solves (DE).
But this function has initial condition Q(\/ax,0) = H(\/ax) = H(x)! (Check
that H(y/ax) = H(x).) Because of this special property of H, we expect that

Q(x,t) = Q(Vaw,at)

since we expect that two solutions of (DE) that start off with same initial
condition are the same (in other words, we expect uniqueness!) Then, the
value of the function @ depends only on the ratio 7. (Q(x,t) will be constant

on the curves x = c¢v/t!) This means that

Qz,t) =g (%)

for some function g of one variable (later, we’ll call the variable z). We know
Q) solves (DE), and we will use that to figure out what ODE g solves. Start

differentiating @) ... remember to use the chain rule! For the derivative with

respect to t, hold x constant, and notice (%) = —ﬁ, SO
t

ot = () ar (7)== ()

Qu(.t) = %g' (%) and Qo (2. 1) :%g” (%)

We know @Q; = kQ)... Plugging in our computations above, this means that

(7))

<,

Also,



Multiplying both sides by %:

)

If we let z = 77 we have —579'(2) = g"(2), or

/! < /
— = 0.
g9 (2) + 5,9 ()
We know how to solve this for g... use an integrating factor! The integrating

.22
factor is e#, and we can calculate
d 22 22 z

= (g () = ¥ty /(2) + g (2) = € (g(2) + =g/(2)) = 0.

Therefore, there is some constant ¢ such that

We have found that ¢’(z) = ce”%. Now, we could integrate again to find
Q(x,t) = g(z) and use the initial conditions to figure out the constants... but

all we really want to find is S = %! Since Q(z,t) = g(z) and z = NG

C 22

S(x,t) = Qu(x,t) = ¢'(2)2, = %e_m.

The only thing we need to figure out is what the constant c is. We use the
fact that as ¢ — 0, S should get close to its initial condition: S(z,t) —
S(z,0) = 6(x). This means that [~ S(z,t)dz — [* 6(x)dz = 1! We know
how to integrate this (by changing variables from = to p = x/v/4kt):

/ —e 4ktdx = \/z_f/ eV’ (\/4kt dp) = C\/E/ e_pgdp — oV Ak

: _ 1
To make sure that this approaches 1, we need the constant ¢ = N

Now, we know exactly what the source function is!
S(a. 1) 1 22
T, t) = e 1kt
Varkt

To solve the problem (x) ((DE) with (IC) u(z,0) = ¢(x)), we find u by
integrating:

Maw:[fsu—%www@

VAarkt

You can take the formula above and check that it works! (Find u; — kug,;
it should work out to be 0. For the initial condition, we can’t really plug in
t =0 — this give us the fraction “8 7 — but we can take the limit ast — 0/
It’s a fair amount of work, but we could prove that u(x,t) — ¢(x).)




