
Math 124A: PDEs

Solving the diffusion (heat) equation

Fix a positive number k and consider the diffusion equation on the whole line

(DE) ut = kuxx (on 0 < t < ∞,−∞ < x < ∞)

Properties of the diffusion equation:

• If S1(x, t) and S2(x, t) are both solutions of (DE) (so (S1)t = k(S1)xx and
(S2)t = k(S2)xx), then the function u(x, t) = a1S1(x, t) + a2S2(x, t) (where a1

and a2 are any two numbers) is a solution of (DE).

You know this because the diffusion equation is linear! You can also check it

by taking partial derivatives: Find

ut =
∂u

∂t
=

∂

∂t
(a1S1 + a2S2)

uxx =
∂2u

∂2x
=

∂2

∂x2
(a1S1 + a2S2)

Check that ut − kuxx = 0!

• If S(x, t) is a solution of (DE), then the function u(x, t) = S(x − y, t)
is a solution of (DE) (where y is any fixed number!)

Check:

ut(x, t) = [S(x − y, t)]t = St(x − y, t)

uxx(x, t) = [S(x − y, t)]xx = Sxx(x − y, t).

Then, ut(x, t) − kuxx(x, t) = St(x − y, t) − kSxx(x − y, t) = 0 since S solves
(DE).

• If S(x, t) is a solution of (DE), then u(x, t) =
∫ ∞
−∞ S(x − y, t)g(y)dy is

a solution of (DE) (for any function g of one variable).

This is also easy to check simply by differentiating u! (If you can pull deriva-

tives under the integral sign.) Intuitively, we can think of this integral as an
infinite sum. In the integral above, we are summing solutions of (DE), so by



linearity, u should solve (DE). More rigorously, if we partition the line into

intervals of size ∆y = 1

n, for each integer k, 1

ng(k
n) is just some number, and

by the previous property
(

g(k
n)∆y

)

S(x − k
n , t) solves (DE). By linearity,

Sn(x, t) =
∞

∑

k=−∞

g

(

k

n

)

S

(

x −
k

n
, t

)

∆y

is a solution of (DE). Of course, as n gets large, Sn(x, t) → u(x, t)! This
implies that u also solves (DE) (to see this, take limits of both sides of the

equation (Sn)t = k(Sn)xx).

• Finally, if v(x, t) is a solution of (DE), the new function u(x, t) = v(
√

ax, at)
is also a solution of (DE) (for any positive number a)!

Check by differentiating (use the chain rule):

ut(x, t) =
∂

∂t
[v(

√
ax, at)] =

(

∂v

∂t

)

(
√

ax, at)
∂

∂t
(at) = a vt(

√
ax, at)

uxx(x, t) =
∂

∂x

(

√
a

∂v

∂x

)

= a vxx(
√

ax, at).

Then, ut − kuxx = 0 at every point (with t > 0).

We will start by solving (DE) with special choice for the initial condition:

The problem (??) will be

(??)

{

St = kSxx (0 < t < ∞,−∞ < x < ∞)

S(x, 0) = δ(x) (−∞ < x < ∞).

The solution S(x, t) that we find is alternately called the source function for

the diffusion equation, Green’s function for the diffusion equation, or the fun-
damental solution of the diffusion equation.

This solution gives us all others! If we want to solve the problem (?)

(?)

{

ut = kuxx (0 < t < ∞,−∞ < x < ∞)
u(x, 0) = φ(x) (−∞ < x < ∞),

the solution is

u(x, t) =

∫ ∞

−∞
S(x − y, t)φ(y)dy.

Why? Well, by our properties of the diffusion equation, this solves (DE) (i.e.,
ut = kuxx). Also, we can check whether the initial condition holds:

u(x, 0) =

∫ ∞

−∞
S(x − y, 0)φ(y)dy =

∫ ∞

−∞
δ(x − y)φ(y)dy = φ(x).



Since u(x, t) solves (DE) and u(x, 0) = φ(x), the function u solves the problem

(?). Intuitively, this is true by linearity of the diffusion equation: We can
write φ(x) as the integral of the functions φ(y)δ(x−y), and since the equation
is linear, the solution u should be the integral of the solutions φ(y)S(x−y, t),

each of which has initial condition φ(y)δ(x − y).

All we have to do is figure out what the function S(x, t) is! Instead, it
will be easier to solve for Q where S = ∂Q

∂x and Q solves the problem






Qt = kQxx (0 < t < ∞,−∞ < x < ∞)

Q(x, 0) = H(x) =
{1 x ≥ 0

0 x < 0

(S = ∂Q
∂x will solve (DE) with S(x, 0) = H ′(x) = δ(x)!) Again, from our

properties of the diffusion equation we know that Q(
√

ax, at) solves (DE).
But this function has initial condition Q(

√
ax, 0) = H(

√
ax) = H(x)! (Check

that H(
√

ax) = H(x).) Because of this special property of H, we expect that

Q(x, t) = Q(
√

ax, at)

since we expect that two solutions of (DE) that start off with same initial
condition are the same (in other words, we expect uniqueness!) Then, the
value of the function Q depends only on the ratio x√

t
. (Q(x, t) will be constant

on the curves x = c
√

t!) This means that

Q(x, t) = g

(

x
√

t

)

for some function g of one variable (later, we’ll call the variable z). We know

Q solves (DE), and we will use that to figure out what ODE g solves. Start
differentiating Q ... remember to use the chain rule! For the derivative with

respect to t, hold x constant, and notice
(

1√
t

)

t
= − 1

2t3/2 , so

Qt(x, t) = g′
(

x
√

t

)

∂

∂t

(

x
√

t

)

= −
x

2t3/2
g′

(

x
√

t

)

.

Also,

Qx(x, t) =
1
√

t
g′

(

x
√

t

)

and Qxx(x, t) =
1

t
g′′

(

x
√

t

)

.

We know Qt = kQxx. Plugging in our computations above, this means that

−
x

2t3/2
g′

(

x
√

t

)

= k
1

t
g′′(

(

x
√

t

)



Multiplying both sides by t
k :

−
x

2k
√

t
g′

(

x
√

t

)

= g′′
(

x
√

t

)

.

If we let z = x√
t
, we have − z

2k
g′(z) = g′′(z), or

g′′(z) +
z

2k
g′(z) = 0.

We know how to solve this for g... use an integrating factor! The integrating

factor is e
z2

4k , and we can calculate

d

dz

(

e
z2

4k g′(z)
)

= e
z2

4k g′′(z) +
2z

4k
e

z2

4k g′(z) = e
z2

4k

(

g′′(z) +
z

2k
g′(z)

)

= 0.

Therefore, there is some constant c such that

e
z2

4k g′(z) = c.

We have found that g′(z) = ce−
z2

4k . Now, we could integrate again to find

Q(x, t) = g(z) and use the initial conditions to figure out the constants... but
all we really want to find is S = ∂Q

∂x ! Since Q(x, t) = g(z) and z = x√
t
,

S(x, t) = Qx(x, t) = g′(z)zx =
c
√

t
e−

x2

4kt .

The only thing we need to figure out is what the constant c is. We use the
fact that as t → 0, S should get close to its initial condition: S(x, t) →
S(x, 0) = δ(x). This means that

∫ ∞
−∞ S(x, t)dx →

∫ ∞
−∞ δ(x)dx = 1! We know

how to integrate this (by changing variables from x to p = x/
√

4kt):
∫ ∞

−∞

c
√

t
e−

x2

4kt dx =
c
√

t

∫ ∞

−∞
e−p2

(√
4kt dp

)

= c
√

4k

∫ ∞

−∞
e−p2

dp = c
√

4k
√

π.

To make sure that this approaches 1, we need the constant c = 1√
4πk

.

Now, we know exactly what the source function is!

S(x, t) =
1

√
4πkt

e−
x2

4kt .

To solve the problem (?) ((DE) with (IC) u(x, 0) = φ(x)), we find u by

integrating:

u(x, t) =

∫ ∞

−∞
S(x − y, t)φ(y)dy =

1
√

4πkt

∫ ∞

−∞
e−

(x−y)2

4kt φ(y)dy.

You can take the formula above and check that it works! (Find ut − kuxx;
it should work out to be 0. For the initial condition, we can’t really plug in

t = 0 — this give us the fraction “ 0

0
” — but we can take the limit as t → 0!

It’s a fair amount of work, but we could prove that u(x, t) → φ(x).)


