
Math 124a: PDEs

The Wave Equation with a Source

Consider the problem of the wave equation with a source:
{

utt − c2uxx = f(x, t) on −∞ < x <∞

u(x, 0) = φ(x); ut(x, 0) = ψ(x).

The solution u is given by the formula

u(x, t) =
1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct

ψ(y) dy +
1

2c

∫∫

∆

f (1)

where the last term is the double integral of f over the domain of dependence
for the point (x, t):

1

2c

∫∫

∆

f =
1

2c

∫ t

0

[

∫ x+c(t−s)

x−c(t−s)

f(y, s) dy

]

ds.

Notice that we could check directly that this formula satisfies utt − c2uxx =
f(x, t) (using the fundamental theorem of calculus carefully!) If u is a solu-

tion, it is also easy to show that the formula must hold by calculating the
integral

∫∫

∆

f =

∫∫

∆

(utt−c
2uxx) = u(x, t)−

1

2
(φ(x+ct)−φ(x−ct))−

1

2c

∫ x+ct

x−ct

ψ(y) dy.

This can be done directly (by changing variables to the characteristic coor-
dinates ξ and η) or by using Green’s theorem. See §3.4 for details.

For the wave equation with a source on the half-line, we will consider the

case of a Dirichlet boundary condition at x = 0. If we have the boundary
condition u(0, t) = 0, we can use the formula for the solution on the whole

line, taking the odd extensions of the initial conditions φ and ψ as well as the
odd extension (in the x−variable) of the source f . This works since, if all of



these functions are odd, every term in the formula (1) equals 0 when x = 0.
By fODD, the odd extension of f in the x−variable, we mean

fODD(x, t) =

{

f(x, t) if x > 0
−f(−x, t) if x < 0.

Given a point (x, t), the domain of dependence is entirely in the first quadrant
if x − ct > 0, so in this region, the boundary condition does not affect the

solution. But in the region x < ct, the boundary condition has an effect, and
the odd extensions of φ, ψ, and f can be used in the formula (1) to determine
the solution.

Now, we wish to consider a general Dirichlet boundary condition. In other
words, we want to solve the problem







utt − c2uxx = f(x, t) on 0 < x <∞

u(x, 0) = φ(x); ut(x, 0) = ψ(x).
u(0, t) = h(t)

We will prove that the formula for the solution is given by

u(x, t) = 1
2(φ(x+ ct) + φ(x− ct)) + 1

2c

∫ x+ct

x−ct ψ(y) dy + 1
2c

∫∫

∆ f if x > ct

u(x, t) = 1
2(φODD(x+ ct) + φODD(x− ct)) + 1

2c

∫ x+ct

x−ct ψODD(y) dy if x < ct

+ 1
2c

∫∫

∆ fODD + h(t− x
c )

(2)

Notice that in the region x > ct, the formula is identical to the solution for
the problem on the whole line. The only effect of changing the boundary
condition from 0 to h(t) is to add a term that depends on h to the solution in

the region x < ct. The function h(t− x
c ) is constant along the characteristics

with positive slope, so this function is basically a wave propogating to the

right.
To solve this problem on the half-line with the general Dirichlet boundary

condition u(0, t) = h(t), we will start by letting v(x, t) = u(x, t) − h(t). For
simplicity, let’s assume φ = ψ = 0. Then, v solves the problem







vtt − c2vxx = f(x, t) − h′′(t) on 0 < x <∞

v(x, 0) = −h(0); vt(x, 0) = −h′(0)

v(0, t) = 0,



and we know how to solve for v! If x > ct, we have

v(x, t) =
1

2
(−h(0) − h(0)) +

1

2c

∫ x+ct

x−ct

(−h′(0)) dy +
1

2c

∫∫

∆

(f − h′′)

= −h(0) − th′(0) +
1

2c

∫∫

∆

h′′ +
1

2c

∫∫

∆

f.

We can calculate the double integral of h′′ by first doing the integral with

respect to y and then integrating by parts:

−
1

2c

∫∫

∆

h′′ = −

∫ t

0

[

1

2c

∫ x+ct

x−ct

1 dy

]

h′′(s) ds = −

∫ t

0

h′′(s)(t− s) ds

= +

∫ t

0

(−1)h′(s) ds− h′(s)(t− s)
∣

∣

∣

t

s=0

= −h(t) + h(0) + th′(0)

Plugging this into the formula for v, we have v(x, t) = −h(t) + 1
2c

∫∫

∆ f.
Therefore, for x > ct,

u(x, t) =
1

2c

∫∫

∆

f.

As expected for this region, the boundary condition has no effect.

For the second region, x < ct, we have that

v(x, t) =
1

2
(−h(0) + h(0)) +

1

2c

∫ x+ct

x−ct

(−h′(0))ODD dy +

∫∫

∆

(f − h′′)ODD.

Notice that since the initial condition v(x, 0) = −h(0) is a constant, we used

the odd extension +h(0) at the left endpoint x − ct, which is less than 0 in
this region. Similarly, for the extension of the initial velocity, we use +h′(0)

to the left of 0 and −h′(0) to the right. Therefore,

v(x, t) =
1

2c

∫ 0

x−ct

h′(0) dy −
1

2c

∫ x+ct

0

h′(0) dy −
1

2c

∫∫

∆

h′′
ODD

+
1

2c

∫∫

∆

fODD

=
h′(0)

2c
(−x+ ct) −

h′(0)

2c
(x+ ct) −

1

2c

∫∫

∆

h′′
ODD

+
1

2c

∫∫

∆

fODD

=
x

c
h′(0) −

1

2c

∫∫

∆

h′′
ODD

+
1

2c

∫∫

∆

fODD.

(3)

Now we only need to carefully compute the double integral of h′′
ODD

on ∆. One
way to do this is to break up the region ∆ into four parts (see the picture



below). Region I is the only one where the odd extension is used: on this
region h′′

ODD
(y, s) = −h′′(s). (Everywhere else on ∆, h′′

ODD
(y, s) = h′′(s).)

Since for each fixed s, the function h′′(s) is a constant, by symmetry we have

that

−

∫∫

I ∪ II

h′′
ODD

(y, s) dy ds =

∫∫

I

h′′(s) dy −

∫∫

II

h′′(s) = 0.

Then, on the square region:

−

∫∫

III

h′′(s) ds = −
1

2c

∫ t−x

c

0

∫ 2x

0

h′′(s) ds dy = −
x

c

∫ t−x

c

0

h′′(s) ds

=
x

c
h′(0) −

x

c
h′(t−

x

c
).

On the top triangle:

−
1

2c

∫∫

IV

h′′(s) ds = −
1

2c

∫ t

t−x

c

∫ x+c(t−s)

x−c(t−s)

h′′(s) dy ds.

= −

∫ t

t−x

c

(t− s)h′′(s) ds =

∫ t

t−x

c

(−1)h′(s) ds− (t− s)h′(s)
∣

∣

∣

t

s=(t−x/c)

= h(t−
x

c
) − h(t) +

x

c
h′(t−

x

c
).

Adding the integrals over each of these four regions, we find

−
1

2c

∫∫

∆

h′′
ODD

= h(t−
x

c
) − h(t) +

x

c
h′(0).



We could have alternatively used Green’s theorem to find the same result:

− 1
2c

∫∫

∆ h
′′
ODD

= 1
2c

∮

C h
′
ODD

dy = 1
2c

∫ x−ct

x−ct h
′
ODD

(y, 0) dy

+ 1
2c

∫ x

x+ct h
′(x

c + t− y
c) dy + 1

2c

∫ x−ct

x h′
ODD

(y,−x
c + t+ y

c ) dy

= x
ch

′(0) − h(t) + h(t− x
c ),

where C is the curve bounding the domain of dependence. C is made up of

three lines: one is the line s = 0 between x− ct and x+ ct, and the other two
are the characteristics of slope ±1/c that pass through the point (x, t) (notice

that along these characteristics, s = ±x/c + t ∓ y/c). Therefore, from (3),
we have that

v(x, t) =

∫∫

∆

fODD + h(t−
x

c
) − h(t).

In the region where x < ct, we have found that u(x, t) = v(x, t) + h(t) is

u(x, t) =

∫∫

∆

fODD + h(t−
x

c
).

This proves the second part of formula (2) for the solution of the wave equa-

tion on the half-line with Dirichlet boundary condition.
We could also directly check that formula (2) works! Show that it solves

the wave equation with the source f and also gives the right initial conditions
and the right boundary condition at t = 0.


