Math 124a: PDEs

The Wave Equation with a Source

Consider the problem of the wave equation with a source:

{ U — gy = f(x,1) on —o00 < T < 00

u(,0) = o(x); wi(x,0) = ¥(x).

The solution w is given by the formula
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where the last term is the double integral of f over the domain of dependence
for the point (z,1):
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Notice that we could check directly that this formula satisfies wuy; — g, =
f(z,t) (using the fundamental theorem of calculus carefully!) If u is a solu-
tion, it is also easy to show that the formula must hold by calculating the
integral
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This can be done directly (by changing variables to the characteristic coor-
dinates £ and 7) or by using Green’s theorem. See §3.4 for details.

For the wave equation with a source on the half-line, we will consider the
case of a Dirichlet boundary condition at x = 0. If we have the boundary
condition u(0,t) = 0, we can use the formula for the solution on the whole
line, taking the odd extensions of the initial conditions ¢ and v as well as the
odd extension (in the z—variable) of the source f. This works since, if all of



these functions are odd, every term in the formula (1) equals 0 when x = 0.
By foon, the odd extension of f in the x—variable, we mean

| f(x,t) if x>0
fODD(SE?t)—{ _f<_aj’t) if v <0.

Given a point (z,t), the domain of dependence is entirely in the first quadrant
if x —ct > 0, so in this region, the boundary condition does not affect the
solution. But in the region x < ct, the boundary condition has an effect, and
the odd extensions of ¢, 1, and f can be used in the formula (1) to determine
the solution.

Now, we wish to consider a general Dirichlet boundary condition. In other
words, we want to solve the problem

Ugp — gy = f(x,t) on 0 <z <oo
u(z,0) = 8(2): wi(z,0) = (x).
u(0,t) = h(t)

We will prove that the formula for the solution is given by

u(@,t) = oz +ct) + d(w —ct)) + & [T b () dy + = [[y f i x> ct
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w(,t) = H(Popn (T + ct) + Popn(z — ct)) + 5 xxjcit Yorp(y)dy  ifx <ct
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Notice that in the region x > ct, the formula is identical to the solution for
the problem on the whole line. The only effect of changing the boundary
condition from 0 to A(t) is to add a term that depends on A to the solution in
the region x < ct. The function h(t — %) is constant along the characteristics
with positive slope, so this function is basically a wave propogating to the
right.
To solve this problem on the half-line with the general Dirichlet boundary
condition u(0,t) = h(t), we will start by letting v(z,t) = u(z,t) — h(t). For
simplicity, let’s assume ¢ = v = 0. Then, v solves the problem

Vit — CUgpe = f(,t) — B'() on 0 <x< oo
v(z,0) = —h(0); vi(x,0) = —h'(0)
v(0,t) =0,



and we know how to solve for v! If x > ct, we have

(1) = 3 (~h(0) — h(0)) +2ic/;+d( 1(0)) dy + —// v

= —h(0) — th'(0) + 2C//hc” 2c//f

We can calculate the double integral of h” by first doing the integral with
respect to y and then integrating by parts:
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= —h(t) + h(0) + th'(0)

s=0

Plugging this into the formula for v, we have v(z,t) = —h(t) + %= [[s -

Therefore, for x > ct,
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As expected for this region, the boundary condition has no effect.
For the second region, z < ct, we have that

1 1 T+ct
U(l’,t) - §<_h<0) + h<0)) + 2_(3/ . ( h/ ODD dy + // h// ODD

Notice that since the initial condition v(z,0) = —h(0) is a constant, we used
the odd extension +h(0) at the left endpoint x — ct, which is less than 0 in
this region. Similarly, for the extension of the initial velocity, we use +h'(0)
to the left of 0 and —h'(0) to the right. Therefore,
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Now we only need to carefully compute the double integral of A ~on A. One
way to do this is to break up the region A into four parts (see the picture




below). Region I is the only one where the odd extension is used: on this
region h!! (y,s) = —h"(s). (Everywhere else on A, h!_(y,s) = h"(s).)
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Since for each fixed s, the function h”(s) is a constant, by symmetry we have

that
—// h! (y,s)dyds = //h”(s) dy — // h"(s) = 0.
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Then, on the square region:
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On the top triangle:
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Adding the integrals over each of these four regions, we find

// o = hlt = ) = (1) + ZH(0).



We could have alternatively used Green’s theorem to find the same result:
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= Z1/(0) — h(t) + h(t — %),

where C' is the curve bounding the domain of dependence. C is made up of
three lines: one is the line s = 0 between x — ct and x + ct, and the other two
are the characteristics of slope +1/c that pass through the point (x,t) (notice
that along these characteristics, s = tx/c +t F y/c). Therefore, from (3),

we have that
v(a,t) = //A Foos + h(t — %) — h(t).

In the region where x < ct, we have found that u(z,t) = v(z,t) + h(t) is

U(:v,t)://AfODﬁh(t—%).

This proves the second part of formula (2) for the solution of the wave equa-
tion on the half-line with Dirichlet boundary condition.

We could also directly check that formula (2) works! Show that it solves
the wave equation with the source f and also gives the right initial conditions
and the right boundary condition at ¢t = 0.



