Math 124a: PDEs

The Wave Equation with a Source

Consider the problem of the wave equation with a source:

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=f(x, t) \\
u(x, 0)=\phi(x) ; \quad u_{t}(x, 0)=\psi(x) .
\end{array} \quad \text { on }-\infty<x<\infty\right.
$$

The solution u is given by the formula

$$
\begin{equation*}
u(x, t)=\frac{1}{2}(\phi(x+c t)+\phi(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(y) d y+\frac{1}{2 c} \iint_{\Delta} f \tag{1}
\end{equation*}
$$

where the last term is the double integral of f over the domain of dependence for the point (x, t) :

$$
\frac{1}{2 c} \iint_{\Delta} f=\frac{1}{2 c} \int_{0}^{t}\left[\int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y\right] d s
$$

Notice that we could check directly that this formula satisfies $u_{t t}-c^{2} u_{x x}=$ $f(x, t)$ (using the fundamental theorem of calculus carefully!) If u is a solution, it is also easy to show that the formula must hold by calculating the integral

$$
\iint_{\Delta} f=\iint_{\Delta}\left(u_{t t}-c^{2} u_{x x}\right)=u(x, t)-\frac{1}{2}(\phi(x+c t)-\phi(x-c t))-\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(y) d y
$$

This can be done directly (by changing variables to the characteristic coordinates ξ and η) or by using Green's theorem. See $\S 3.4$ for details.

For the wave equation with a source on the half-line, we will consider the case of a Dirichlet boundary condition at $x=0$. If we have the boundary condition $u(0, t)=0$, we can use the formula for the solution on the whole line, taking the odd extensions of the initial conditions ϕ and ψ as well as the odd extension (in the x-variable) of the source f. This works since, if all of
these functions are odd, every term in the formula (1) equals 0 when $x=0$. By $f_{\text {odD }}$, the odd extension of f in the x-variable, we mean

$$
f_{\mathrm{ODD}}(x, t)= \begin{cases}f(x, t) & \text { if } x>0 \\ -f(-x, t) & \text { if } x<0\end{cases}
$$

Given a point (x, t), the domain of dependence is entirely in the first quadrant if $x-c t>0$, so in this region, the boundary condition does not affect the solution. But in the region $x<c t$, the boundary condition has an effect, and the odd extensions of ϕ, ψ, and f can be used in the formula (1) to determine the solution.

Now, we wish to consider a general Dirichlet boundary condition. In other words, we want to solve the problem

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=f(x, t) \\ u(x, 0)=\phi(x) ; \quad u_{t}(x, 0)=\psi(x) . \\ u(0, t)=h(t) & \text { on } 0<x<\infty \\ \end{cases}
$$

We will prove that the formula for the solution is given by

$$
\begin{align*}
u(x, t)=\frac{1}{2}(\phi(x+c t)+\phi(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(y) d y+\frac{1}{2 c} \iint_{\Delta} f & \text { if } x>c t \\
u(x, t)=\frac{1}{2}\left(\phi_{\mathrm{ODD}}(x+c t)+\phi_{\mathrm{ODD}}(x-c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi_{\mathrm{ODD}}(y) d y & \text { if } x<c t \\
\quad+\frac{1}{2 c} \iint_{\Delta} f_{\mathrm{ODD}}+h\left(t-\frac{x}{c}\right) & \tag{2}
\end{align*}
$$

Notice that in the region $x>c t$, the formula is identical to the solution for the problem on the whole line. The only effect of changing the boundary condition from 0 to $h(t)$ is to add a term that depends on h to the solution in the region $x<c t$. The function $h\left(t-\frac{x}{c}\right)$ is constant along the characteristics with positive slope, so this function is basically a wave propogating to the right.

To solve this problem on the half-line with the general Dirichlet boundary condition $u(0, t)=h(t)$, we will start by letting $v(x, t)=u(x, t)-h(t)$. For simplicity, let's assume $\phi=\psi=0$. Then, v solves the problem

$$
\begin{cases}v_{t t}-c^{2} v_{x x}=f(x, t)-h^{\prime \prime}(t) & \text { on } 0<x<\infty \\ v(x, 0)=-h(0) ; v_{t}(x, 0)=-h^{\prime}(0) & \\ v(0, t)=0 & \end{cases}
$$

and we know how to solve for v ! If $x>c t$, we have

$$
\begin{aligned}
v(x, t) & =\frac{1}{2}(-h(0)-h(0))+\frac{1}{2 c} \int_{x-c t}^{x+c t}\left(-h^{\prime}(0)\right) d y+\frac{1}{2 c} \iint_{\Delta}\left(f-h^{\prime \prime}\right) \\
& =-h(0)-t h^{\prime}(0)+\frac{1}{2 c} \iint_{\Delta} h^{\prime \prime}+\frac{1}{2 c} \iint_{\Delta} f .
\end{aligned}
$$

We can calculate the double integral of $h^{\prime \prime}$ by first doing the integral with respect to y and then integrating by parts:

$$
\begin{aligned}
-\frac{1}{2 c} \iint_{\Delta} h^{\prime \prime} & =-\int_{0}^{t}\left[\frac{1}{2 c} \int_{x-c t}^{x+c t} 1 d y\right] h^{\prime \prime}(s) d s=-\int_{0}^{t} h^{\prime \prime}(s)(t-s) d s \\
& =+\int_{0}^{t}(-1) h^{\prime}(s) d s-\left.h^{\prime}(s)(t-s)\right|_{s=0} ^{t} \\
& =-h(t)+h(0)+t h^{\prime}(0)
\end{aligned}
$$

Plugging this into the formula for v, we have $v(x, t)=-h(t)+\frac{1}{2 c} \iint_{\Delta} f$. Therefore, for $x>c t$,

$$
u(x, t)=\frac{1}{2 c} \iint_{\Delta} f
$$

As expected for this region, the boundary condition has no effect.
For the second region, $x<c t$, we have that

$$
v(x, t)=\frac{1}{2}(-h(0)+h(0))+\frac{1}{2 c} \int_{x-c t}^{x+c t}\left(-h^{\prime}(0)\right)_{\mathrm{ODD}} d y+\iint_{\Delta}\left(f-h^{\prime \prime}\right)_{\mathrm{ODD}} .
$$

Notice that since the initial condition $v(x, 0)=-h(0)$ is a constant, we used the odd extension $+h(0)$ at the left endpoint $x-c t$, which is less than 0 in this region. Similarly, for the extension of the initial velocity, we use $+h^{\prime}(0)$ to the left of 0 and $-h^{\prime}(0)$ to the right. Therefore,

$$
\begin{align*}
v(x, t) & =\frac{1}{2 c} \int_{x-c t}^{0} h^{\prime}(0) d y-\frac{1}{2 c} \int_{0}^{x+c t} h^{\prime}(0) d y-\frac{1}{2 c} \iint_{\Delta} h_{\mathrm{ODD}}^{\prime \prime}+\frac{1}{2 c} \iint_{\Delta} f_{\mathrm{ODD}} \\
& =\frac{h^{\prime}(0)}{2 c}(-x+c t)-\frac{h^{\prime}(0)}{2 c}(x+c t)-\frac{1}{2 c} \iint_{\Delta} h_{\mathrm{ODD}}^{\prime \prime}+\frac{1}{2 c} \iint_{\Delta} f_{\mathrm{ODD}} \\
& =\frac{x}{c} h^{\prime}(0)-\frac{1}{2 c} \iint_{\Delta} h_{\mathrm{ODD}}^{\prime \prime}+\frac{1}{2 c} \iint_{\Delta} f_{\mathrm{ODD}} . \tag{3}
\end{align*}
$$

Now we only need to carefully compute the double integral of $h_{\text {ODD }}^{\prime \prime}$ on Δ. One way to do this is to break up the region Δ into four parts (see the picture
below). Region I is the only one where the odd extension is used: on this region $h_{\text {ODD }}^{\prime \prime}(y, s)=-h^{\prime \prime}(s)$. (Everywhere else on $\Delta, h_{\text {ODD }}^{\prime \prime}(y, s)=h^{\prime \prime}(s)$.)

Since for each fixed s, the function $h^{\prime \prime}(s)$ is a constant, by symmetry we have that

$$
-\iint_{I \cup I I} h_{\mathrm{ODD}}^{\prime \prime}(y, s) d y d s=\iint_{I} h^{\prime \prime}(s) d y-\iint_{I I} h^{\prime \prime}(s)=0 .
$$

Then, on the square region:

$$
\begin{aligned}
-\iint_{I I I} h^{\prime \prime}(s) d s & =-\frac{1}{2 c} \int_{0}^{t-\frac{x}{c}} \int_{0}^{2 x} h^{\prime \prime}(s) d s d y=-\frac{x}{c} \int_{0}^{t-\frac{x}{c}} h^{\prime \prime}(s) d s \\
& =\frac{x}{c} h^{\prime}(0)-\frac{x}{c} h^{\prime}\left(t-\frac{x}{c}\right) .
\end{aligned}
$$

On the top triangle:

$$
\begin{aligned}
& -\frac{1}{2 c} \iint_{I V} h^{\prime \prime}(s) d s=-\frac{1}{2 c} \int_{t-\frac{x}{c}}^{t} \int_{x-c(t-s)}^{x+c(t-s)} h^{\prime \prime}(s) d y d s \\
& \quad=-\int_{t-\frac{x}{c}}^{t}(t-s) h^{\prime \prime}(s) d s=\int_{t-\frac{x}{c}}^{t}(-1) h^{\prime}(s) d s-\left.(t-s) h^{\prime}(s)\right|_{s=(t-x / c)} ^{t} \\
& \quad=h\left(t-\frac{x}{c}\right)-h(t)+\frac{x}{c} h^{\prime}\left(t-\frac{x}{c}\right)
\end{aligned}
$$

Adding the integrals over each of these four regions, we find

$$
-\frac{1}{2 c} \iint_{\Delta} h_{\mathrm{ODD}}^{\prime \prime}=h\left(t-\frac{x}{c}\right)-h(t)+\frac{x}{c} h^{\prime}(0) .
$$

We could have alternatively used Green's theorem to find the same result:

$$
\begin{aligned}
-\frac{1}{2 c} \iint_{\Delta} h_{O D D}^{\prime \prime}= & \frac{1}{2 c} \oint_{C} h_{O D D}^{\prime} d y=\frac{1}{2 c} \int_{x-c t}^{x-c t} h_{O D D}^{\prime}(y, 0) d y \\
& +\frac{1}{2 c} \int_{x+c t}^{x} h^{\prime}\left(\frac{x}{c}+t-\frac{y}{c}\right) d y+\frac{1}{2 c} \int_{x}^{x-c t} h_{O D D}^{\prime}\left(y,-\frac{x}{c}+t+\frac{y}{c}\right) d y \\
= & \frac{x}{c} h^{\prime}(0)-h(t)+h\left(t-\frac{x}{c}\right),
\end{aligned}
$$

where C is the curve bounding the domain of dependence. C is made up of three lines: one is the line $s=0$ between $x-c t$ and $x+c t$, and the other two are the characteristics of slope $\pm 1 / c$ that pass through the point (x, t) (notice that along these characteristics, $s= \pm x / c+t \mp y / c$). Therefore, from (3), we have that

$$
v(x, t)=\iint_{\Delta} f_{\mathrm{ODD}}+h\left(t-\frac{x}{c}\right)-h(t) .
$$

In the region where $x<c t$, we have found that $u(x, t)=v(x, t)+h(t)$ is

$$
u(x, t)=\iint_{\Delta} f_{\mathrm{ODD}}+h\left(t-\frac{x}{c}\right) .
$$

This proves the second part of formula (2) for the solution of the wave equation on the half-line with Dirichlet boundary condition.

We could also directly check that formula (2) works! Show that it solves the wave equation with the source f and also gives the right initial conditions and the right boundary condition at $t=0$.

