Math 124B: PDEs

Eigenvalue problems for differential operators

We want to find eigenfunctions of (linear) differential operators acting on functions on the interval $[0, l]$ that satisfy boundary conditions at the endpoints. (In this discussion, we will assume that the function 0 solves $A 0=0$ and satisfies the boundary conditions.) For instance, we have often looked at the second-order differential operator $A=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$ with two boundary conditions.

The eigenvalue problem for such an A (with boundary conditions) is to find all the possible eigenvalues of A. In other words, we have to find all of the numbers λ such that there is a solution of the equation $A X=\lambda X$ for some function $X(X \neq 0)$ that satisfies the boundary conditions at 0 and at l. When λ is an eigenvalue, all of these non-zero solutions are eigenfunctions corresponding to λ.

If we have the right number of boundary conditions, we often find that only some special set of numbers will be eigenvalues. Imagine picking any number λ you want. You can always solve the ordinary differential equation $A X=\lambda X$. There will be actually be many solutions of the ODE! For example, if the ODE is second order, then the general solution will have two arbitrary constants A and B. We want to find out which of these solutions also satisfy the boundary conditions. If there are two boundary conditions, you will have two equations involving the constants A and B. Most of the time, there will be only one possible solution of these two equations with two unknowns - which means most of the time, 0 is the only function that solves the ODE and satisfies the boundary conditions! Therefore, most of the time, the λ you picked is not an eigenvalue. The number λ is an eigenvalue only if it happens to be a number that somehow allows your two equations to have more than one possible solution for A and B.
Let's see an example of this: Let A be the operator $-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$ that acts on functions on $[0, l]$ with boundary conditions $X(0)=0$ and $X^{\prime}(l)=0$. We want to find all the λ such that

$$
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(X)=\lambda X ; \quad X(0)=0 ; \quad X^{\prime}(l)=0
$$

has a non-zero solution. When we write down the general solution, the two boundary conditions will give us equations for the arbitrary constants A and B and the number λ. Our goal is to find all the numbers λ such that when we solve these two equations for A and B, we do not get that the general solution must become $X=0$. However, for this particular ODE, we can not write down the general solution without first knowing if λ is equal to zero, is positive, or is negative. Therefore, we consider each of these three cases separately.

- Case (i): $\lambda=0$

In this case, λ is a specific number, so we're really just checking whether or not 0
is an eigenvalue. The general solution is $X(x)=A x+B$. The two boundary conditions give the equations

$$
\begin{aligned}
& X(0)=B=0 \\
& X^{\prime}(l)=A=0
\end{aligned}
$$

Clearly, the only solution of these equations is $A=0$ and $B=0$. Therefore, the only solution of (\star) is $X=0$, which means 0 is not an eigenvalue.

- Case (ii): $\lambda<0$

When λ is a negative number, $\lambda=-\beta^{2}$ for some $\beta>0$ and the general solution is $X(x)=A \cosh (\beta x)+B \sinh (\beta x)$. Using the boundary conditions, the two equations are

$$
\begin{array}{r}
X(0)=A=0 \\
X^{\prime}(l)=\beta A \sinh (\beta l)+\beta B \cosh (\beta l)=0
\end{array}
$$

Since A must be 0 , this system of two equations has a solution only when $\beta B \cosh (\beta l)=$ 0 . Remember $\beta>0$ and $\cosh (a)$ never equals 0 for any number a. Therefore, B must be 0 . The only solution is again $A=B=0$, so $X(x)=0$, and λ cannot be an eigenvalue. (I.e., there can be no negative eigenvalues.)

- Case (iii): $\lambda>0$

In this case, $\lambda=\beta^{2}$ for some $\beta>0$ and the general solution is $X(x)=A \cos (\beta x)+$ $B \sin (\beta x)$. The two boundary conditions give us the following system of equations:

$$
\begin{aligned}
X(0)=A & =0 \\
X^{\prime}(l)=-\beta A \sin (\beta l)+\beta B \cos (\beta l) & =0
\end{aligned}
$$

Since $A=0$, this system is solved only when $A=0$ and $\beta B \cos (\beta l)=0$. For most β, this means $B=0$, so $X=0$ and β^{2} is not an eigenvalue. However, when β is $\frac{\pi}{2 l}, \frac{3 \pi}{2 l} \frac{5 \pi}{2 l}$, etc, then $\cos (\beta l)=0$, and B does not have to be 0 ! These means that if $\lambda=\lambda_{n}=\left(\frac{(2 n+1) \pi}{2 l}\right)^{2}$ for some $n=0,1,2, \ldots$ then λ is an eigenvalue, and the eigenfunction is $X_{n}(x)=B \sin \left(\frac{(2 n+1) \pi}{2 l} x\right)$ (A must still be 0 , but B could be anything and X_{n} will still satisfy the boundary conditions!). If λ is any other positive number, it's not an eigenvalue.

We've solved the eigenvalue problem: The only eigenvalues are the λ_{n}, for $n=0,1,2, \ldots$! (In the process of figuring out which numbers were eigenvalues, notice that we had to solve for the eigenfunctions X_{n} as well! This is because the definition of eigenvalue involves the existence of an eigenfunction.)

