
Math 124B: PDEs

Eigenvalue problems for differential operators

We want to find eigenfunctions of (linear) differential operators acting on functions on the
interval [0, l] that satisfy boundary conditions at the endpoints. (In this discussion, we
will assume that the function 0 solves A0 = 0 and satisfies the boundary conditions.) For

instance, we have often looked at the second-order differential operator A = − d2

dx2
with two

boundary conditions.

The eigenvalue problem for such an A (with boundary conditions) is to find all the possible
eigenvalues of A. In other words, we have to find all of the numbers λ such that there
is a solution of the equation AX = λX for some function X (X 6= 0) that satisfies the
boundary conditions at 0 and at l. When λ is an eigenvalue, all of these non-zero solutions
are eigenfunctions corresponding to λ.

If we have the right number of boundary conditions, we often find that only some special set
of numbers will be eigenvalues. Imagine picking any number λ you want. You can always
solve the ordinary differential equation AX = λX. There will be actually be many solutions
of the ODE! For example, if the ODE is second order, then the general solution will have
two arbitrary constants A and B. We want to find out which of these solutions also satisfy
the boundary conditions. If there are two boundary conditions, you will have two equations
involving the constants A and B. Most of the time, there will be only one possible solution
of these two equations with two unknowns – which means most of the time, 0 is the only
function that solves the ODE and satisfies the boundary conditions! Therefore, most of
the time, the λ you picked is not an eigenvalue. The number λ is an eigenvalue only if it
happens to be a number that somehow allows your two equations to have more than one
possible solution for A and B.

Let’s see an example of this: Let A be the operator − d2

dx2
that acts on functions on [0, l]

with boundary conditions X(0) = 0 and X ′(l) = 0. We want to find all the λ such that

− d2

dx2
(X) = λX; X(0) = 0; X ′(l) = 0 (?)

has a non-zero solution. When we write down the general solution, the two boundary
conditions will give us equations for the arbitrary constants A and B and the number λ.
Our goal is to find all the numbers λ such that when we solve these two equations for A and
B, we do not get that the general solution must become X = 0. However, for this particular
ODE, we can not write down the general solution without first knowing if λ is equal to zero,
is positive, or is negative. Therefore, we consider each of these three cases separately.

• Case (i): λ = 0

In this case, λ is a specific number, so we’re really just checking whether or not 0



is an eigenvalue. The general solution is X(x) = Ax + B. The two boundary condi-
tions give the equations

X(0) = B = 0

X ′(l) = A = 0

Clearly, the only solution of these equations is A = 0 and B = 0. Therefore, the only
solution of (?) is X = 0, which means 0 is not an eigenvalue.

• Case (ii): λ < 0

When λ is a negative number, λ = −β2 for some β > 0 and the general solution
is X(x) = Acosh(βx) + Bsinh(βx). Using the boundary conditions, the two equations
are

X(0) = A = 0

X ′(l) = βAsinh(βl) + βBcosh(βl) = 0

Since A must be 0, this system of two equations has a solution only when βBcosh(βl) =
0. Remember β > 0 and cosh(a) never equals 0 for any number a. Therefore, B must
be 0. The only solution is again A = B = 0, so X(x) = 0, and λ cannot be an
eigenvalue. (I.e., there can be no negative eigenvalues.)

• Case (iii): λ > 0

In this case, λ = β2 for some β > 0 and the general solution is X(x) = A cos(βx) +
B sin(βx). The two boundary conditions give us the following system of equations:

X(0) = A = 0

X ′(l) = −βA sin(βl) + βB cos(βl) = 0.

Since A = 0, this system is solved only when A = 0 and βB cos(βl) = 0. For most
β, this means B = 0, so X = 0 and β2 is not an eigenvalue. However, when β is
π
2l

, 3π
2l

5π
2l

, etc, then cos(βl) = 0, and B does not have to be 0! These means that

if λ = λn =
(

(2n+1)π
2l

)2

for some n = 0, 1, 2, ... then λ is an eigenvalue, and the

eigenfunction is Xn(x) = B sin
(

(2n+1)π
2l

x
)

(A must still be 0, but B could be anything

and Xn will still satisfy the boundary conditions!). If λ is any other positive number,
it’s not an eigenvalue.

We’ve solved the eigenvalue problem: The only eigenvalues are the λn, for n = 0, 1, 2, ...!
(In the process of figuring out which numbers were eigenvalues, notice that we had to solve
for the eigenfunctions Xn as well! This is because the definition of eigenvalue involves the
existence of an eigenfunction.)


