Math 124B: PDEs

Example from class (§5.6)

Solve the following wave equation on the finite interval $(0, \pi)$ with a source:

$$
u_{t t}-u_{x x}=x^{2}
$$

with boundary conditions $u_{x}(0, t)=1$ and $u_{x}(\pi, t)=0$ and with initial conditions $u(x, 0)=$ $2 \cos (5 x)$ and $u_{t}(x, 0)=0$.

We need to use the eigenfunctions $X_{o}(x)=1$ and $X_{n}(x)=\cos (n x)(n=1,2,3 \ldots)$ since we have Neumann boundary conditions at both endpoints. We want to solve for $u(x, t)$, and since the PDE includes $u_{t t}(x, t), u_{x x}(x, t)$, and x^{2}, we will expand all of these functions as Fourier cosine series:

$$
\begin{aligned}
u(x, t) & =\frac{u_{o}(t)}{2}+\sum_{n=1}^{\infty} u_{n}(t) \cos (n x) \\
u_{t t}(x, t) & =\frac{v_{o}(t)}{2}+\sum_{n=1}^{\infty} v_{n}(t) \cos (n x) \\
u_{x x}(x, t) & =\frac{w_{o}(t)}{2}+\sum_{n=1}^{\infty} w_{n}(t) \cos (n x) \\
x^{2} & =\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty}(-1)^{n} \frac{4}{n^{2}} \cos (n x) .
\end{aligned}
$$

We know the cosine series for x^{2} from previous homework. We do not know yet what the coefficients u_{n}, v_{n}, and w_{n} are - notice that $u_{n}(t)$ is what we are trying to solve for! But we do know that v_{n} and w_{n} are related to u_{n} : Using the formulas for calculating Fourier coefficients, we have the following formulas for v_{n} and w_{n} :

$$
\begin{align*}
v_{n}(t) & =\frac{2}{\pi} \int_{0}^{\pi} u_{t t}(x, t) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} \frac{\partial^{2}}{\partial t^{2}}[u(x, t) \cos (n x)] d x \\
& =\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left[\frac{2}{\pi} \int_{0}^{\pi} u(x, t) \cos (n x)\right] d x=\frac{\mathrm{d}^{2} u_{n}}{\mathrm{~d} t^{2}}(t) \tag{1}\\
w_{n}(t) & =\frac{2}{\pi} \int_{0}^{\pi} u_{x x}(x, t) \cos (n x) d x=n \frac{2}{\pi} \int_{0}^{\pi} u_{x}(x, t) \sin (n x) d x+\left.\frac{2}{\pi} u_{x}(x, t) \cos (n x)\right|_{x=0} ^{\pi} \\
& =-n^{2} \frac{2}{\pi} \int_{0}^{\pi} u_{x}(x, t) \cos (n x) d x+\left.\frac{2 n}{\pi} u(x, t) \sin (n x)\right|_{x=0} ^{\pi}-\frac{2}{\pi} \tag{2}\\
& =-n^{2} \frac{2}{\pi} \int_{0}^{\pi} u_{x}(x, t) \cos (n x) d x-\frac{2}{\pi}=-n^{2} u_{n}(t)-\frac{2}{\pi}
\end{align*}
$$

Notice that these formulas work for all $n=1,2,3, .$. , and also for $n=0$! Going back to the PDE $u_{t t}-u_{x x}=x^{2}$, we can plug in the Fourier series for $u_{t t}, u_{x x}$, and x^{2} to find

$$
\begin{aligned}
& \frac{v_{o}(t)}{2}+\sum_{n=1}^{\infty} v_{n}(t) \cos (n x)-\frac{w_{o}(t)}{2}-\sum_{n=1}^{\infty} w_{n}(t) \cos (n x)=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty}(-1)^{n} \frac{4}{n^{2}} \cos (n x) \\
& \frac{v_{o}(t)-w_{o}(t)}{2}+\sum_{n=1}^{\infty}\left(v_{n}(t)-w_{n}(t)\right) \cos (n x)=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty}(-1)^{n} \frac{4}{n^{2}} \cos (n x)
\end{aligned}
$$

For the two cosine series above to be equal, we must have that the coefficients of each eigenfunction are the same - so the above equality gives us infinitely many equations:

$$
\begin{aligned}
& v_{o}(t)-w_{o}(t)=\frac{2 \pi^{2}}{3} \\
& v_{n}(t)-w_{n}(t)=(-1)^{n} \frac{4}{n^{2}} \quad \text { for } n=1,2,3, \ldots
\end{aligned}
$$

Using $v_{n}(t)=u_{n}^{\prime \prime}(t)$ and $w_{n}(t)=-n^{2} u_{n}(t)-\frac{2}{\pi}$ for all $n=0,1,2,3 \ldots$ (see (??) and (??)), these equations become the following ODEs for u_{n} :

$$
\begin{aligned}
& u_{o}^{\prime \prime}(t)=-\frac{2}{\pi}+\frac{2 \pi^{2}}{3} \\
& u_{n}^{\prime \prime}(t)+n^{2} u_{n}(t)=-\frac{2}{\pi}+(-1)^{n} \frac{4}{n^{2}} \text { for } n=1,2,3, \ldots
\end{aligned}
$$

For each n, to solve the second-order ODE, we need the two initial conditions $u_{n}(0)$ and $u_{n}^{\prime}(0)$. We can find these using the initial conditions for the PDE. We have the Fourier series for $u(x, t)$ - plug in $t=0$ and set this equal to the initial condition $u(x, 0)=2 \cos (5 x)$:

$$
\frac{u_{o}(0)}{2}+\sum_{n=0}^{\infty} u_{n}(0) \cos (n x)=2 \cos (5 x)
$$

Again, we need to match the constant terms on each side, so $u_{o}(0)=0$, and we need to match the coefficients of $\cos (n x)$ for each n, so $u_{n}(0)=0$ for $n=1,2,3,4,6,7, \ldots$, but $u_{5}(0)=2$. For the initial velocity,

$$
u_{t}(x, 0)=\frac{u_{o}^{\prime}(0)}{2}+\sum_{n=0}^{\infty} u_{n}^{\prime}(0) \cos (n x)=0
$$

so clearly $u_{n}^{\prime}(0)=0$ for all n.
For $n=0$, solve

$$
u_{o}^{\prime \prime}(t)=-\frac{2}{\pi}+\frac{2 \pi^{2}}{3} ; \quad u_{o}(0)=0 ; \quad u_{o}^{\prime}(0)=0
$$

The general solution of the ODE (integrate twice!) is $u_{o}(t)=\left(-\frac{1}{\pi}+\frac{\pi^{2}}{3}\right) t^{2}+A t+B$. Using the initial conditions $u_{o}(0)=B=0$ and $u_{o}^{\prime}(0)=A=0$.

$$
u_{o}(t)=\left(-\frac{1}{\pi}+\frac{\pi^{2}}{3}\right) t^{2}
$$

For $n=5$, solve

$$
u_{5}^{\prime \prime}(t)+25 u_{5}(t)=-\frac{2}{\pi}-\frac{4}{25} ; \quad u_{5}(0)=2 ; \quad u_{5}^{\prime}(0)=0
$$

The general solution of the ODE is $u_{5}(t)=A \cos (5 t)+B \sin (5 t)-\frac{2}{25 \pi}-\frac{4}{625}$ (check by plugging it back into the ODE!) This is the sum of the general solution of the homogeneous equation $u_{5}^{\prime \prime}+25 u_{5}=0$ and of one specific solution of the ODE. Using the boundary conditions, $u_{5}^{\prime}(0)=$ $5 B=0$, so $B=0$. Also, $u_{5}(0)=A-\frac{2}{25 \pi}-\frac{4}{625}=2$, so $A=2+\frac{2}{25 \pi}+\frac{4}{625}$.

$$
u_{5}(t)=\left(2+\frac{2}{25 \pi}+\frac{4}{625}\right) \cos (5 t)-\frac{2}{25 \pi}-\frac{4}{625}
$$

For all other $n(n \neq 0,5)$, solve

$$
u_{n}^{\prime \prime}(t)+n^{2} u_{n}(t)=-\frac{2}{\pi}+(-1)^{n} \frac{4}{n^{2}} ; \quad u_{n}(0)=0 ; \quad u_{n}^{\prime}(0)=0 .
$$

The general solution of the ODE is $u_{n}(t)=A \cos (5 t)+B \sin (5 t)-\frac{2}{n^{2} \pi}+(-1)^{n} \frac{4}{n^{4}}$. Using the initial conditions tells us $B=0$ and $A=\frac{2}{n^{2} \pi}-(-1)^{n} \frac{4}{n^{4}}$.

$$
u_{n}(t)=\left(\frac{2}{n^{2} \pi}+(-1)^{n+1} \frac{4}{n^{4}}\right)(\cos (5 t)-1)
$$

Putting these solutions together, we know all of the Fourier coefficients $u_{n}(t)$ for the function $u(x, t)$, so we have solved for $u(x, t)$!

$$
\begin{aligned}
u(x, t)=\frac{1}{2}\left(-\frac{1}{\pi}+\frac{\pi^{2}}{3}\right) t^{2}+\{2 \cos (5 t)+ & \left.\left(\frac{2}{25 \pi}+\frac{4}{625}\right)(\cos (5 t)-1)\right\} \cos (5 x) \\
& +\sum_{\substack{n=1 \\
n \neq 5}}^{\infty}\left(\frac{2}{n^{2} \pi}+(-1)^{n+1} \frac{4}{n^{4}}\right)(\cos (5 t)-1) \cos (n x)
\end{aligned}
$$

