Math 124B: PDEs

Final Review

Review your homework problems, as well as the midterm and midterm review.

Outline

1. Eigenvalue problems

- Know how to determine the eigenvalues along with the eigenfunctions of the operator $-\frac{d^{2}}{{d x^{2}}^{2}}$ with given boundary conditions on an interval. (See examples in Chapter 4 and in the handout from class.)
- What theorems do you know about the eigenvalues and eigenfunctions of this problem with symmetric boundary conditions? When are the eigenvalues also non-negative? (Section 5.3)

2. General Fourier series

- Once you have a list of eigenvalues and corresponding eigenfunctions for the eigenvalue problem above, any function on the interval can be written as a Fourier series (an infinite linear combination of these eigenfunctions). How do you find the constants?
- Notice that each different boundary condition will yield a different list of eigenfunctions - what are some of the common Fourier series that you know, and what boundary conditions do the eigenfunctions satisfy?
- Understand the three theorems about the convergence of Fourier series.
- What is Parseval's equality?

3. Separation of variables

- Know how to find separated solutions of PDEs with given boundary conditions. For example, find all solutions of the form $u(x, t)=X(x) T(t)$ of the heat equation with the mixed boundary conditions $u^{\prime}(0, t)=0$ and $u(l, t)=0$.
- When the boundary conditions are homogeneous, the separated solutions can be summed up to give a general series solution to the problem. (Initial conditions would be needed to determine the constants in the series.)

4. Solving heat and wave equations using Fourier series

- This works even for inhomogeneous boundary conditions! Of course, when the boundary conditions are homogeneous, this technique gives exactly the same solution as the general series solution above.
- Expand the solution $u(x, t)$ (and every other function that appears in the problem) as a Fourier series in x. Important: make sure you use the Fourier series with the eigenfunctions that correspond to the right boundary conditions! (See section 5.6 and the handout from class for examples.)

5. Fourier transform

- What is the definition of the Fourier transform of a function $f(x)$? What does Fourier's identity say?
- What is the definition of the convolution of two functions f and g ? (This will be given on the exam.) Use the definition of Fourier transform and of convolution to show that the Fourier transform of the function $(f \star g)(x)$ is $F(k) G(k)$.
- Know how to use the Fourier transform to solve PDEs (such as the heat equation, or the heat equation with a convection term - see $\S 12.4$, exercise \#1).

6. Laplace's equation

- Be able to find radial solutions to Laplace's equation. (The operator Δ in terms of polar and spherical coordinates will be given.)
- Be able to solve $u_{x x}+u_{y y}=0$ on a rectangle with given boundary conditions on each side. (Separate variables, so assume $u(x, y)=X(x) Y(y)$, and solve for X and Y using three homogeneous boundary conditions - after finding all of these separated solutions, combine them into a general series solution. Finally, use the (inhomogeneous) boundary condition on the fourth side of the rectangle to determine the constants in the series.)
- To solve $u_{x x}+u_{y y}=0$ on a circle (with any given boundary condition at $r=a$) use polar coordinates and separatation of variables to solve for $u(r, \theta)=R(r) \Theta(\theta)$ what are the boundary conditions for Θ ?. (From this, we find Poisson's formula for the solution of the Dirichlet problem on the circle - the formula will be given if needed.)

Problems

1. Consider the eigenvalue problem for $-\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}}$ with boundary conditions $X(0)=0$ and $X^{\prime}(l)+2 X(l)=0$. Find equations that determine all of the eigenvalues, and list the corresponding eigenfunctions.
2. In what sense does the Fourier cosine series of $f(x)=2 \pi x-x^{2}$ converge on $(0, \pi)$? (I.e., does it converge in L^{2}, pointwise, or uniformly? Give reasons!) What does the series converge to on $(-\pi, 0)$?
3. (a) Find the complex Fourier series for x^{2} on the interval $(0, \pi)$.
(b) Use part (a) and Parseval's equality to find the value of the sum $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.
4. Solve for $u(x, t)$:

$$
\begin{aligned}
& u_{t t}=u_{x x} \quad \text { for } 0<x<1 \\
& u(0, t)=0 ; \quad u_{x}(1, t)=e^{t} \\
& u(x, 0)=\sin \left(\frac{\pi}{2} x\right) ; \quad u_{t}(x, 0)=1
\end{aligned}
$$

5. Solve Laplace's equation on the upper half-plane with the given boundary condition:

$$
\begin{array}{ll}
u_{x x}+u_{y y}=0 & \text { in the half-plane } y>0 \\
u(x, 0)=\phi(x) & \text { on the line } y=0
\end{array}
$$

Show all your steps! Hint: Use the Fourier transform in the x-variable.
6. (a) Solve $u_{x x}+u_{y y}+u_{z z}=1$ in the spherical shell $a<r<b$ with the Dirichlet condition $u=0$ on $r=a$ and the Neumann condition $\frac{\partial u}{\partial r}=0$ on $r=b$.
(b) What happens if you try to solve this problem on the sphere $r<b$, with the conditions $\frac{\partial u}{\partial r}=0$ on $r=b$ and $u(0)$ is finite? Can you solve for u if you change the condition to $\frac{\partial u}{\partial r}=1$?
7. Solve Laplace's equation on the quarter circle in the first quadrant ($0<r<1$ and $0<\theta<\frac{\pi}{2}$) with the boundary conditions $u(r, 0)=0, u\left(r, \frac{\pi}{2}\right)=0$, and $\frac{\partial u}{\partial r}(1, \theta)=\cos (\theta)$. (Also assume u is finite at $r=0$.)
(Hint: Use $\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}$ and separate variables. What boundary conditions will you use to find the separated solutions? Once you have a general series solution, what boundary condition will you use to figure out the constants?)

