Math 124B: PDEs

Final Review

Review your homework problems, as well as the midterm and midterm review.

Outline

- 1. Eigenvalue problems
 - Know how to determine the *eigenvalues* along with the *eigenfunctions* of the operator $-\frac{d^2}{dx^2}$ with given boundary conditions on an interval. (See examples in Chapter 4 and in the handout from class.)
 - What theorems do you know about the eigenvalues and eigenfunctions of this problem with *symmetric* boundary conditions? When are the eigenvalues also non-negative? (Section 5.3)
- 2. General Fourier series
 - Once you have a list of eigenvalues and corresponding eigenfunctions for the eigenvalue problem above, any function on the interval can be written as a *Fourier series* (an infinite linear combination of these eigenfunctions). How do you find the constants?
 - Notice that each different boundary condition will yield a different list of eigenfunctions — what are some of the common Fourier series that you know, and what boundary conditions do the eigenfunctions satisfy?
 - Understand the three theorems about the convergence of Fourier series.
 - What is Parseval's equality?
- 3. Separation of variables
 - Know how to find separated solutions of PDEs with given boundary conditions. For example, find all solutions of the form u(x,t) = X(x)T(t) of the heat equation with the mixed boundary conditions u'(0,t) = 0 and u(l,t) = 0.
 - When the boundary conditions are *homogeneous*, the separated solutions can be summed up to give a general series solution to the problem. (Initial conditions would be needed to determine the constants in the series.)
- 4. Solving heat and wave equations using Fourier series
 - This works even for *inhomogeneous* boundary conditions! Of course, when the boundary conditions are homogeneous, this technique gives exactly the same solution as the general series solution above.

- Expand the solution u(x, t) (and every other function that appears in the problem) as a Fourier series in x. Important: make sure you use the Fourier series with the eigenfunctions that correspond to the right boundary conditions! (See section 5.6 and the handout from class for examples.)
- 5. Fourier transform
 - What is the definition of the Fourier transform of a function f(x)? What does Fourier's identity say?
 - What is the definition of the convolution of two functions f and g? (This will be given on the exam.) Use the definition of Fourier transform and of convolution to show that the Fourier transform of the function $(f \star g)(x)$ is F(k)G(k).
 - Know how to use the Fourier transform to solve PDEs (such as the heat equation, or the heat equation with a convection term see §12.4, exercise #1).
- 6. Laplace's equation
 - Be able to find radial solutions to Laplace's equation. (The operator Δ in terms of polar and spherical coordinates will be given.)
 - Be able to solve $u_{xx} + u_{yy} = 0$ on a rectangle with given boundary conditions on each side. (Separate variables, so assume u(x, y) = X(x)Y(y), and solve for X and Y using three homogeneous boundary conditions — after finding all of these separated solutions, combine them into a general series solution. Finally, use the (inhomogeneous) boundary condition on the fourth side of the rectangle to determine the constants in the series.)
 - To solve $u_{xx}+u_{yy}=0$ on a circle (with any given boundary condition at r=a) use polar coordinates and separatation of variables to solve for $u(r,\theta) = R(r)\Theta(\theta)$ what are the boundary conditions for Θ ?. (From this, we find Poisson's formula for the solution of the Dirichlet problem on the circle — the formula will be given if needed.)

Problems

- 1. Consider the eigenvalue problem for $-\frac{d^2}{dx^2}$ with boundary conditions X(0) = 0 and X'(l) + 2X(l) = 0. Find equations that determine all of the eigenvalues, and list the corresponding eigenfunctions.
- 2. In what sense does the Fourier cosine series of $f(x) = 2\pi x x^2$ converge on $(0, \pi)$? (I.e., does it converge in L^2 , pointwise, or uniformly? Give reasons!) What does the series converge to on $(-\pi, 0)$?
- 3. (a) Find the complex Fourier series for x^2 on the interval $(0, \pi)$.
 - (b) Use part (a) and Parseval's equality to find the value of the sum $\sum_{n=1}^{\infty} \frac{1}{n^4}$.
- 4. Solve for u(x,t):

$$u_{tt} = u_{xx} \quad \text{for } 0 < x < 1$$

$$u(0,t) = 0; \quad u_x(1,t) = e^t$$

$$u(x,0) = \sin(\frac{\pi}{2}x); \quad u_t(x,0) = 1$$

5. Solve Laplace's equation on the upper half-plane with the given boundary condition:

 $u_{xx} + u_{yy} = 0$ in the half-plane y > 0 $u(x, 0) = \phi(x)$ on the line y = 0.

Show all your steps! Hint: Use the Fourier transform in the x-variable.

6. (a) Solve $u_{xx} + u_{yy} + u_{zz} = 1$ in the spherical shell a < r < b with the Dirichlet condition u = 0 on r = a and the Neumann condition $\frac{\partial u}{\partial r} = 0$ on r = b.

(b) What happens if you try to solve this problem on the sphere r < b, with the conditions $\frac{\partial u}{\partial r} = 0$ on r = b and u(0) is finite? Can you solve for u if you change the condition to $\frac{\partial u}{\partial r} = 1$?

7. Solve Laplace's equation on the quarter circle in the first quadrant (0 < r < 1 and $0 < \theta < \frac{\pi}{2}$ with the boundary conditions u(r, 0) = 0, $u(r, \frac{\pi}{2}) = 0$, and $\frac{\partial u}{\partial r}(1, \theta) = \cos(\theta)$. (Also assume u is finite at r = 0.)

(*Hint:* Use $\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$ and separate variables. What boundary conditions will you use to find the separated solutions? Once you have a general series solution, what boundary condition will you use to figure out the constants?)