The Fourier sine series of the function $\phi(x)=\left\{\begin{array}{ll}0 & 0<x<\frac{1}{4} \\ 1 & \frac{1}{4}<x<\frac{3}{4} \\ 0 & \frac{3}{4}<x<1\end{array}\right.$ is

$$
\sum_{n=1}^{\infty} \frac{2}{n \pi}\left[\cos \left(\frac{1}{4} n \pi\right)-\cos \left(\frac{3}{4} n \pi\right)\right] \sin (n \pi x)
$$

By the convergence theorem for classical Fourier series, this series converges for all x ! What happens at $x=\frac{1}{4}$? What happens very nearby $x=\frac{1}{4}$?

The sum of first N terms in the series for the given value of x (to four decimal places)

	$\mathrm{x}=0.25$	$\mathrm{x}=0.251$	$\mathrm{x}=0.249$
$\mathrm{~N}=1$	0.6366	0.6386	0.6346
$\mathrm{~N}=2$	0.4244	0.4284	0.4204
$\mathrm{~N}=3$	0.5517	0.5577	0.5457
$\mathrm{~N}=4$	0.4608	0.4688	0.4528
$\mathrm{~N}=5$	0.5315	0.5415	0.5215
$\mathrm{~N}=10$	0.4841	0.5042	0.4642
$\mathrm{~N}=50$	0.4968	0.5964	0.3975
$\mathrm{~N}=500$	0.4977	1.0898	-0.0892
$\mathrm{~N}=5000$	0.5000	0.9899	0.0101
$\mathrm{~N}=50000$	0.5000	0.9990	0.0010

In general, for points very close to the jump, the convergence of the series will take a long time. For example, look at the partial sums of the series for $x=0.250001$: when $N=500$, the sum is only 0.5007 ; when $N=50,000$, it is 0.5995 ; when $N=100,000$, it is 0.6957 ; when $N=200,000$, it is 0.8665 ; when $N=300,000$, it is 0.9935 ; when $N=500,000$, it is 1.0895 ; and when $N=5,000,000$, it is 0.9899 . So the series eventually converges to 1 - although even for $N=50,000,000$, the partial sum is still only 0.9990 !

