Midterm Review

- 1. Eigenvalue problems
 - (a) Know how to solve an eigenvalue problem for an operator on a finite interval with given boundary conditions. (See handout!)
 - (b) Examples from homework: Section 4.3, #9, #16; Section 5.3, #6
- 2. Separation of Variables
 - (a) Know how to find the *separated solutions* of a PDE with given boundary conditions. For all of the second order equations we've looked at, you need to write u(x,t) = X(x)T(t) and find the system of ODEs that X and T satisfy, along with boundary conditions for X. Solve the eigenvalue problem for X, and for each possible solution X (i.e., for each eigenfunction!), find the corresponding solution for T. This will give you all of the separated solutions.
 - (b) Recall that the sum (i.e., linear combination) of the separated solutions is the *general series solution* for the PDE.
 - (c) Example: Find the general series solution for the diffusion (heat) equation with Neumann boundary conditions on [0, 1].
 - (d) Examples from homework: Section 4.1, #3; Section 4.2, #2
- 3. Fourier Series
 - (a) If a function $\phi(x)$ on (0, l) is given by a Fourier sine series or a Fourier cosine series, know how to find the coefficients.
 - (b) If we have a general series solution of a PDE with given boundary conditions, we can use Fourier series of the initial conditions to find the constants in the general solution.
 - (c) Examples from homework: Section 5.1, #2; Section 5.1, #8; Section 5.3, #3
 - (d) Understand the full Fourier series (real or complex) on (-l, l), and properties of even, odd, and periodic functions.
- 4. Orthogonality
 - (a) Know the definition of the *inner product* (f, g) of two functions f(x) and g(x) on the interval [a, b]. (Remember the functions might be complex-valued!) What does it mean for f(x) and g(x) to be orthogonal? Also, define the size of a function f(x) on [a, b] to be $||f||^2 = (f, f)$. (Notice that ||f|| > 0 if $f(x) \neq 0$.)
 - (b) Examples: Section 5.3, # 2; Show that $\sin(\frac{n\pi}{l}x)$ and $\cos(\frac{m\pi}{l}x)$ are orthogonal on (-l, l) for all n = 1, 2, 3, ... and m = 1, 2, 3, ...
 - (c) We have three theorems involving general Fourier series and orthogonality. The following definition will be given on the exam: The boundary conditions

 $\alpha_1 X(a) + \beta_1 X(b) + \gamma_1 X'(a) + \delta_1 X'(b) = 0$ $\alpha_2 X(a) + \beta_2 X(b) + \gamma_2 X'(a) + \delta_2 X'(b) = 0$ are *symmetric* if

$$\left[-f(x)\overline{g'(x)} + f'(x)\overline{g(x)}\right] \Big|_{x=a}^{b} = 0$$

You should know that the following theorems are true and also know how to prove them by integration by parts.

- i. Symmetric BCs \Rightarrow all eigenvalues are real
- ii. Symmetric BCs \Rightarrow if X_1 and X_2 are two functions corresponding to two different eigenvalues $\lambda_1 \neq \lambda_2$, then X_1 and X_2 are orthogonal
- iii. If the BCs are symmetric and if all real-valued functions f(x) that satisfy the BCs also satisfy $f(x)f'(x)\Big|_{x=a}^{b} \leq 0$, then there are no negative eigenvalues.
- 5. Convergence of Fourier Series
 - (a) Three different types of convergence for series
 - i. Know the definitions for L^2 convergence, pointwise convergence, and uniform convergence of infinite series.
 - ii. Example: Notice that (for -1 < x < 1) $\sum_{n=0}^{2N} (-1)^n x^{2n} = \sum_{n=0}^{2N} (-x^2)^n = \frac{1+x^{4N+2}}{1+x^2}$. Explain why $\sum_{n=0}^{\infty} (-1)^n x^{2n}$ converges pointwise, but not uniformly in the interval -1 < x < 1. What is the pointwise limit? Does it converge in the L^2 sense?
 - iii. Example from homework: Section 5.4, # 3
 - (b) Three convergence theorems
 - i. For all of the below theorems, we assume we have solved eigenvalue problem $-X'' = \lambda X$ on (a, b) with symmetric BCs. Therefore, we have infinitely many eigenvalues (increasing to $+\infty$) along with corresponding orthogonal eigenfunctions $\{X_n\}_{n=1}^{\infty}$. How do you define the *Fourier coefficients* and the *Fourier series* of any function f(x) on (a, b)?
 - ii. L^2 Convergence Theorem. If ||f(x)|| is finite, its Fourier series converges in the L^2 sense.
 - iii. Pointwise Convergence Theorem. If f(x) and f'(x) are piecewise continuous on $a \le x \le b$, the classical Fourier series for f(x) converges almost everywhere. Know what the Fourier series converges to at points where f is not continuous!
 - iv. Uniform Convergence Theomem. If f(x), f'(x), and f''(x) exist and are continuous for $a \le x \le b$ and f(x) satisfies the boundary conditions, then the Fourier series converges uniformly.
 - v. You will be given the three theorems above on the exam, but you will need to know what the assumptions mean and the definitions of the types of convergence!
 - vi. Example: In what sense does the Fourier sine series for f(x) = 1 on (0, l) converge? What about the Fourier cosine series?
 - vii. Example: Let $\phi(x) = 0$ for $0 \le x < 1$; $\phi(1) = -1$; and $\phi(x) = 1$ for $1 < x \le 3$. Does the Fourier cosine series converge in L^2 ? uniformly? pointwise? What does it converge to when x = 1?
 - viii. Example from homework: Section 5.4, #8