Tensor Algebra I

Continuum Mechanics: Fall 2007

Reading: Gurtin, Section 1

Notation. Denote the space of 3-dimensional Euclidean points by \mathscr{E} , and the associated vector space by \mathscr{V} .

Representation Theorem for Linear Forms. Let $\psi : \mathcal{V} \to \mathbb{R}$ be linear. Then there exists a unique vector \mathbf{a} such that $\psi(\mathbf{v}) = \mathbf{a} \cdot \mathbf{v}$ for every $\mathbf{v} \in \mathcal{V}$.

Note. Similar statements are true for many abstract inner product spaces!

Definition. A **tensor** is a linear transformation from \mathcal{V} into \mathcal{V} .

Note. In general a tensor is a multilinear form from a vector space into \mathbb{R} , but our book uses tensor, as above, to always mean a "tensor of type $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$," or in other words, a bilinear form from $\mathscr{V} \times \mathscr{V}^*$ into \mathbb{R} .

The space of all tensors is a *vector space* with addition and scalar multiplication properly defined; also, the product of any two tensors is defined by composition. This space is also an *inner product space*, with the inner product defined by $\mathbf{S} \cdot \mathbf{T} = \operatorname{tr}(\mathbf{S}^T \mathbf{T})$, where the **transpose** of a tensor \mathbf{S} is the unique tensor such that

$$\mathbf{S}\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{S}^T \mathbf{v}$$
 for every $\mathbf{u}, \mathbf{v} \in \mathcal{V}$,

and the **trace** is defined as the unique linear operator tr from the space of all tensors into \mathbb{R} such that

$$tr(\mathbf{u} \otimes \mathbf{v}) = \mathbf{u} \cdot \mathbf{v} \text{ for every } \mathbf{u}, \mathbf{v} \in \mathcal{V}.$$

Definition. The **tensor product** of any two vectors \mathbf{a} and \mathbf{b} is the tensor $\mathbf{a} \otimes \mathbf{b}$ defined by

$$\mathbf{a} \otimes \mathbf{b} = (\mathbf{b} \cdot \mathbf{v})\mathbf{a}$$
 for every $\mathbf{v} \in \mathcal{V}$.

Recall from geometry that for any unit vector \mathbf{e} , $(\mathbf{e} \otimes \mathbf{e})\mathbf{v} = (\mathbf{v} \cdot \mathbf{e})\mathbf{e}$ is the projection of \mathbf{v} in the direction \mathbf{e} ; also $(\mathbf{I} - \mathbf{e} \otimes \mathbf{e}) = \mathbf{v} - (\mathbf{v} \cdot \mathbf{e})\mathbf{e}$ is the projection into the plane perpendicular to \mathbf{e} .

Definition. Given a skew tensor \mathbf{W} , there exists a unique vector \mathbf{w} , called the **axial vector** corresponding to \mathbf{W} , such that $\mathbf{W}\mathbf{v} = \mathbf{w} \times \mathbf{v}$ for all $\mathbf{v} \in \mathcal{V}$.

Note. This says that (after fixing a basis) a skew tensor \mathbf{W} is determined by only three numbers (the components of its axial vector!).

Recall that the area of a rhombus with sides \mathbf{w} and \mathbf{v} (and angle θ between them) is $|\mathbf{v} \times \mathbf{w}| = |\mathbf{v}||\mathbf{w}|\sin\theta$. The volume of a parallelepiped with sides \mathbf{u}, \mathbf{v} , and \mathbf{w} is the absolute value of the scalar triple product

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}).$$

Also, recall the relationship between the cross product and the determinant, and that the determinant measures the ratio of volumes: For any parallelepiped \mathscr{P} with sides $\mathbf{u}, \mathbf{v}, \mathbf{w}$,

$$\det \mathbf{S} = \frac{\mathbf{S}\mathbf{u} \cdot (\mathbf{S}\mathbf{v} \times \mathbf{S}\mathbf{w})}{\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})} = \pm \frac{\operatorname{vol}(\mathbf{S}(\mathscr{P}))}{\operatorname{vol}(\mathscr{P})}$$

In other words, if a volume is transformed by a linear map S, a unit of volume is transformed into a volume of size $|\det S|$.

Notation and definitions. Some special subsets of tensors are Sym, all *symmetric* tensors; Skw, all *skew* tensors; Psym, all positive definite, symmetric tensors; Orth, all orthogonal tensors; Orth⁺, all rotations.

A tensor **Q** is **orthogonal** if $\mathbf{Q}\mathbf{u} = \mathbf{Q}\mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in \mathcal{V}$. Note that this is equivalent to $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$ or to $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}$ or det $\mathbf{Q} = \pm 1$. An orthogonal tensor **Q** is a **rotation** if its determinant is positive (and therefore, if and only if det $\mathbf{Q} = +1$).

A tensor S is positive definite if $\mathbf{v} \cdot \mathbf{S} \mathbf{v} > 0$ for all $\mathbf{v} \in \mathcal{V} \setminus \{\mathbf{0}\}$.

Exercises. 3, 5, 4, 6, 7 (only (4) and (5)), 9, 11, 12, 15, 16, 17

• Fix a basis e_1, e_2, e_3 of \mathbb{R}^3 . Consider the tensor (linear mapping) from \mathbb{R}^3 to \mathbb{R}^3 given by

$$\mathbf{S} = \left(\begin{array}{rrr} -1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

and the vectors

$$\mathbf{v} = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}; \quad \mathbf{w} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$

Graph the vectors \mathbf{v} and \mathbf{w} (starting at the origin) on the $\mathbf{e_1} - \mathbf{e_2}$ plane. Sketch the rhombus formed by these two vectors and find its area (using geometry – recall the formula for the area of a rhombus and that the angle between any two non-zero vectors \mathbf{v} and \mathbf{w} is defined by $\cos^{-1} \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}$). Then, calculate $|\mathbf{v} \times \mathbf{w}|$. Next, sketch the vectors $\mathbf{S}\mathbf{v}$ and $\mathbf{S}\mathbf{w}$ and the rhombus they form on another plane. Find the area of this rhombus and calculate $|\mathbf{S}\mathbf{v} \times \mathbf{S}\mathbf{w}|$. What must det \mathbf{S} be?

Notice that **S** is a 1-1 mapping from every point in the first rhombus to every point in the second rhombus (where we identify points **p** with vectors $\mathbf{p} - \mathbf{o}$). What happens if we transform the first rhombus using the mapping

$$T = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 1 \end{array}\right)?$$