
Math 5B: Critical points and absolute extreme values

Examples

Solving for Critical Points

Finding critical points is really an algebra problem: Solve the system of equations ∇f = 0.
(Notice this is a system n equations if f is a function of n variables! We must set each partial
derivative equal to 0.) In general, this system will often be nonlinear, so it may be very dif-
ficult to solve for all the critical points! When f is a function of two variables, there are two
equations that must be true at a critical point. The strategy for finding all the critical points
is to consider one equation at a time, figure out all the possibilities for solving it, then in each
case, try to solve the second equation also. Always keep in mind that a critical point (xo, yo)
needs to simultaneously solve both equations!

Example 1 Find the critical points of f(x, y) = x3 sin y − x and classify them.

We need to solve fx(x, y) = 0 and fy(x, y) = 0:

3x2 sin y − 1 = 0

x3 cos y = 0

The first equation looks very difficult to solve, but the second equation tells us that we must
have either x = 0 or cos y = 0 at a critical point. Therefore, we consider two cases.

Case I: If x = 0. This case gives us no critical points since the first equation becomes −1 = 0,
which is impossible.

Case II: If cos y = 0, this means y = nπ
2

for some odd integer n. If n = 4k − 1, sin y = −1 and
if n = 4k − 3, sin y = 1. Therefore, when n = 4k − 1, we would need to solve 3x2 + 1 = 0 to
find a critical point, but this is impossible! When n = 4k − 3, we need to solve 3x2 − 1 = 0;
this is true when x = ± 1√

3
. Therefore, for every other odd n, there are two critical points.

All the critical points: ( 1√
3
, (4k−3)π

2
) and (− 1√

3
, (4k−3)π

2
) where k is any integer.

To classify these critical points, we calculate the determinant of the Hessian matrix (at any
point (x, y)):

|Hf(x, y)| =
∣∣∣∣ fxx fxy

fyy fyy

∣∣∣∣ =

∣∣∣∣ 6x sin y 3x2 cos y
3x2 cos y −x3 sin y

∣∣∣∣ = −6x4 sin2 y − 9x4 cos2 y



Plugging in any critical point (± 1√
3
, (4k−3)π

2
), we get that∣∣∣Hf(± 1√

3
, (4k−3)π

2
)
∣∣∣ = −2

3
< 0,

so each critical point must be a saddle point.

This next example is possibly more algebra than you would be expected to do on homework or
a test, but it’s a good illustration of the logic of solving a system of equations!
Example 2 f(x, y, z) = x2yz + y2z + z3 − 3z

We need to solve the system of three equations:

2xyz = 0

x2z + 2yz = 0

x2y + y2 + 3z2 − 3 = 0

The first equation looks the simplest: from it, we see that either x = 0, y = 0, or z = 0.

Case I: x = 0.
First, look at the second equation. When x = 0, we must have either y = 0 or z = 0 to make
the second equation true. This gives us two sub-cases.... if y = 0, the last equation gives us
that z2 = 1, or z = ±1. If z = 0, then the last equation tells us that y2 = 3, or y = ±

√
3.

In each sub-case, we found two critical points. In total, the four critical points we found are:
(0, 0,±1) and (0,±

√
3, 0).

Case II: y = 0.
In this case, the second equation tell us that either x = 0, or z = 0. The last equation is
impossible if both y = z = 0. If y = x = 0, the last equation gives z = ±1, so we find two of
the critical points that we already found in Case I.

Case III: z = 0.
In this case, the second equation is 0 = 0, which is always true. The third equation becomes
x2y + y2 − 3 = 0. This means that y = −x2±

√
x4+12

2
(by the quadratic formula), so here we’ve

found infinitely many critical points in this case: two for each value of x! (And notice that if
x = 0, y = ±

√
3, so we have the critical points (0,±

√
3, 0) that we already found in Case 1.)

All the critical points: (0, 0,±1) and (x, −x2±
√

x4+12
2

) for all real numbers x.

Question: Could you re-solve this system, looking at the second equation first? Factoring the
second equation, you see that either z = 0, or y = −x2

2
. What next?



Finding Absolute Minimums and Maximums

The extreme value theorem guarantees that a (continuous) function achieves its maximum
and its minimum values on a closed bounded domain. To find the maximum and minimum
values, recall that we check the function’s values at all of the critical points inside the domain,
as well as the function’s values on the boundary of the domain. By checking at these points,
notice we find the absolute maximum (minimum) value – that is, the biggest (smallest) the
function can be – as well as the point(s) that value is achieved at.

The following examples are from the book, but are rewritten slightly:
Example 4.33 Find the absolute maximum and minimum values of the function f(x, y) =
2x2 + 2y2 − x + y on the closed disk D = {(x, y)|x2 + y2 ≤ 1}.

First, find the critical points of f(x, y). Calculate that ∇f(x, y) = (4x − 1, 4y + 1). Setting
both 4x− 1 = 0 and 4y + 1 = 0, we see we must have both x = 1

4
and y = −1

4
. Therefore, the

only critical point is (1
4
,−1

4
). This point is in the disk D, so we check the value of f(1

4
,−1

4
) = −1

4
.

Now, notice that the boundary of D is all the points on the circle x2 + y2 = 1. We can
break up the boundary into two parts: the upper half-circle y =

√
1− x2 and the lower half-

circle y = −
√

1− x2.

For the upper half-circle, consider g(x) = 2 − x +
√

1− x2 (for −1 ≤ x ≤ 1). For all the
points on the upper half-circle y =

√
1− x2, g(x) = f(x, y). We will find the extreme values

of g(x) on the interval [−1, 1]. Setting g′(x) = −1 − x/
√

1− x2 = 0, we find the only critical
point is at x = − 1√

2
. We need to check the values of g at this point and at the endpoints of

the interval:
g(− 1√

2
) = 2 +

√
2; g(−1) = 3; g(1) = 1;

None of these values are smaller than f(1
4
,−1

4
), so none are candidates for the absolute mini-

mum of f . Since we’re on the upper half circle, f(− 1√
2
, 1√

2
) = g(− 1√

2
) = 2 +

√
2. This is the

largest value we’ve found for f (so far!), so this is a possibility for the absolute maximum of f .

To check the values of f on the lower half-circle, consider h(x) = f(x,−
√

1− x2) = 2 −
x −
√

1− x2 (for −1 ≤ x ≤ 1). To find the critical values of h(x) on [−1, 1], find the critical
points in the interval and check the values of h(x) at these critical points and at the endpoints.
You should find that the only critical point is x = 1√

2
and that h(x) is maximized at x = −1

(with value h(−1) = 3) and minimized at x = 1√
2

(with value h( 1√
2
) = 2 −

√
2). Neither of

these values is larger or smaller than ones we’ve already found, though.

Putting this together, we see that f(x, y) is minimized at (1
4
,−1

4
), with value f(1

4
, 1

4
) = −1

4
,

and is maximized at (− 1√
2
, 1√

2
), with value f(− 1√

2
, 1√

2
) = 2 +

√
2.

Notice that we could have checked the boundary in one step: we can describe all the points on
the circle by (cos θ, sin θ) where θ ranges from 0 to 2π. Then, on the boundary, the function is
equal to g(θ) = 2(cos θ)2 + 2(sin θ)2 − cos θ + sin θ = 2 − cos θ + sin θ. Then, we find critical
points wherever g′(θ) = sin θ + cos θ = 0. On [0, 2π], tan θ = −1 only at 3π

4
and 7π

4
. These



values of θ correspond to the points (− 1√
2
, 1√

2
) and ( 1√

2
,− 1√

2
) that we found above! Checking

the values of the function at these two points on the boundary and at the critical point on
the inside of the disk, we find the same absolute minimum and maximum as with the previous
method. This is the method the book uses; feel free to use whichever you like better. (This
method is typically easier because you can avoid the square roots in the derivatives and algebra
above! It’s a good reason to review trig, including learning the values where sine, cosine, and
tangent are 0 and ±1.)

Example 4.34 Find the absolute minimum and absolute maximum values of the function
f(x, y) = x3 − 3xy + 3y2 on the rectangle D = {(x, y)|1

4
≤ x ≤ 1, 0 ≤ y ≤ 2}. (I changed the

rectangle slightly from what is given in the book.)

First, solve for the critical points of the function: Set 3x2 − 3y = 0 and 6y − 3x = 0. From the
first equation, at a critical point, we must have y = x2. Then from the second, 6x2 − 3x = 0
implies that either x = 0 or x = 1

2
. Therefore, the only two critical points are (0, 0) and (1

2
, 1

4
).

However, the point (0, 0) is not on the rectangle we’re interested in, so we do not consider it!
The value of the function at the only critical point that is in the rectangle is f(1

2
, 1

4
) = − 1

16
.

We break the boundary up into four different lines: x = 1
4

(with 0 ≤ y ≤ 2); x = 1 (with
0 ≤ y ≤ 2); y = 0 (with 1

4
≤ x ≤ 1); and y = 2 (with 1

4
≤ x ≤ 1). (Draw a picture to see this

clearly!)

On the line x = 1
4
, consider g(y) = f(1

4
, y) (on the interval [0, 2]). To solve for the critical

points, set g′(y) = 0: g′(y) = −3
4

+ 6y = 0. The only critical point is at y = 1
8
. Since this is

in [0, 2], check the values g(1
8
) = 1

32
, g(0) = 1

64
, and g(2) = 673

64
. Notice that the point on this

line corresponding to y = 2 (that is, the point (1
4
, 2)) is a possible maximum for f (It’s the

largest value of f we’ve found so far, but we still have three more parts of the boundary to check!)

Similarly, on y = 0, consider g(x) = x3 on the interval [1
4
, 1]. Once you’ve found the max-

imum and minimum on this line (as well as on the other two lines that make up the boundary),
compare all the values you’ve checked to find out that the absolute maximum and the absolute
minimum are

f(1
4
, 2) = 673

64
(← absolute maximum)

f(1
2
, 1

4
) = − 1

16
(← absolute minimum)

Example 4.35 Try this example on your own! When you look at the boundary, you can
break it into three parts: the upper half-circle y =

√
1− x2 (with −1 ≤ x ≤ 0); the line

y = −x + 1 (with 0 ≤ x ≤ 1) and the lower half-circle y = −
√

1− x2 (with −1 ≤ x ≤ 1).

Or, if you’d prefer, you can divide the boundary into two parts: the line y = −x + 1 (with
0 ≤ x ≤ 1) and the circle, described by (cos θ, sin θ) where π

2
≤ θ ≤ 2π.


