Math 5B: Answers to Midterm Review Problems

1. (a) $\lim _{(x, y) \rightarrow(0,2)} e^{-\frac{x-1}{y^{2}}}=\sqrt[4]{e}$
(b) $\lim _{(x, y) \rightarrow(1,0)} \frac{x y(y-x+1)}{(x-1)^{2}+y^{2}}$ does not exist. (Check the limit along the lines $x=1$ and $y=0$. Use good notation when computing your limits!)
2. The level curves of $f(x, y)$ are the ellipses $x^{2}+4 y^{2}=c$ for $c \geq 0$ (there are no level curves for $c<0)$. The unit vector in the direction \mathbf{v} is $\mathbf{u}=\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) . D_{\mathbf{u}} f(2,0)=\frac{4}{\sqrt{5}}$ and $D_{\mathbf{u}} f\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right)=2 \sqrt{10}$.
3. Using the point $(0,1): d f=\Delta x$. Then $\Delta f=f(0.9,0.2)-f(0,1) \approx .9$ so $f(0.9,0.2) \approx 0.9$. Using the point $(1,0)$ should give a better approximation, though! At $(1,0), d f=\Delta x+\Delta y$. Then $f(0.9,0.2) \approx f(1,0)+(0.9-1)+(0.2-0)=1.1$.
4. Show $f_{x x}+f_{y y}=0$. (Use the chain rule and the results from implicit differentiation of $x=r \cos \theta$ and $y=r \sin \theta: \frac{\partial r}{\partial x}=\cos \theta, \frac{\partial \theta}{\partial x}=\frac{-\sin \theta}{r}$, etc. OR, substitute to get $f(x, y)=$ $\left(x^{2}+y^{2}\right) \sin \left(2 \arctan \frac{y}{x}\right)$. $)$
5. By Taylor's formula $f(x, y) \approx x+x(y-1)=x y$.
6. Using the implicit function theorem, we can locally solve for $u(x, y)$ and $v(x, y)$ near a point ($x_{o}, y_{o}, u_{o}, v_{o}$) satisfying both of the given equations as long as

$$
\left|\begin{array}{ll}
2 u_{o} & 2 v_{o} \\
2 u_{o} & 4 v_{o}
\end{array}\right|=4 u_{o} v_{o} \neq 0 .
$$

In other words, whenever both $u_{o} \neq 0$ and $v_{o} \neq 0$. Implicitly differentiating both equations, we find first that $\frac{\partial u}{\partial x}=\frac{e^{x}+x}{u}$, then $\frac{\partial^{2} u}{\partial x^{2}}=\frac{e^{x}+1}{u}-\frac{\left(e^{x}+x\right)^{2}}{u^{3}}$.
6. $y-z=0$
7. The minimum temperature is -1 (it occurs at the critical point $(1,0)$).

The maximum temperature is 5 (it occurs at the boundary points $(-1,1)$ and $(-1,-1)$).
8. There are two critical points: $(0,0)$ is a saddle point and $(6,18)$ is a local minimum.
9. div $\mathbf{F}=\frac{1}{x}+\frac{x}{\sqrt{1-(x y)^{2}}} ; \operatorname{curl} \mathbf{F}=\left(\frac{3}{2} x \sqrt{y}-x e^{z}\right) \mathbf{i}+\left(\frac{1}{z}-y^{\frac{3}{2}}\right) \mathbf{j}+\left(\frac{y}{\sqrt{1-(x y)^{2}}}+e^{z}\right) \mathbf{k}$
10. \#1 and $\# 4$ are meaningless; $\# 2, \# 3, \# 6$ are vector fields; $\# 5$ is a scalar function.

