Math 5B: Answers to Midterm Review Problems

1. (a) $\lim _{(x, y) \rightarrow(1,0)} e^{-\frac{x}{y^{2}}}=0$
(b) $\lim _{(x, y) \rightarrow(1,0)} \frac{x y(y-x+1)}{(x-1)^{2}+y^{2}}$ does not exist

Along the line $x=1$, the limit equals 1 , but along the line $y=0$, the limit equals 0 .
2. The level curves of the surface are the ellipses $x^{2}+4 y^{2}=c$ for $c \geq 0$.
$\nabla f=2 x \mathbf{i}+8 y \mathbf{j}$, so $\nabla f(2,0)=4 \mathbf{i}$ and $\nabla f\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right)=2 \sqrt{2} \mathbf{i}+4 \sqrt{2} \mathbf{j}$
$\nabla_{\mathbf{v}} f(x, y)=\frac{2 x+16 y}{\sqrt{5}}$
3. $d z=\left(\tan (x y)+y x \sec ^{2}(x y)+1\right) d x+\left(x^{2} \sec ^{2}(x y)\right) d y$

At $(1,0), d z=d x+d y$; therefore, $f(0.9,0.2) \approx f(1,0)+\Delta x+\Delta y=1.1$.
4. $f_{r r}=2 \sin (2 \theta) ; \frac{f_{r}}{r}=2 \sin (2 \theta) ; \frac{f_{\theta \theta}}{r^{2}}=-4 \sin (2 \theta)$. Then, $\nabla^{2} f=f_{r r}+\frac{f_{r}}{r}+\frac{f_{\theta \theta}}{r^{2}}=0$
5. $\frac{\partial u}{\partial x}=\frac{e^{x}+x}{u}$ and $\frac{\partial^{2} u}{\partial x^{2}}=\frac{e^{x}+1}{u}-\frac{\left(e^{x}+x\right)^{2}}{u^{3}}$
6. (a) $(t \cos (t))^{2}+(t \sin (t))^{2}=t^{2}$
(b) At the point $\left(0, \frac{\pi}{2}, \frac{\pi}{2}\right), t=\frac{\pi}{2}$, and $\mathbf{v}\left(\frac{\pi}{2}\right)=-\frac{\pi}{2} \mathbf{i}+\mathbf{j}+\mathbf{k}$
(c) $x(s)=-\frac{\pi}{2} s$

$$
y(s)=s+\frac{\pi}{2}
$$

$$
z(s)=s+\frac{\pi}{2}
$$

7. $y-z=0$
8. The minimum value of f is -1 (this occurs at the critical point $(1,0))$.

The maximum value of f is 5 (this occurs at the boundary points $(-1,1)$ and $(-1,-1)$).
9. There are two critical points of $f: a=(0,0)$ and $b=(6,18)$.

The matrix of second derivatives of f is $\operatorname{Hess}(f)(x, y)=\left[\begin{array}{cc}6 \mathrm{x} & -6 \\ -6 & 2\end{array}\right]$.
At a, $\operatorname{det}[\operatorname{Hess}(f)(0,0)]=-36<0$, so a is a saddle point.
At b, $\operatorname{det}[\operatorname{Hess}(f)(6,18)]=36>0$, and since $f_{x x}(6,18)=36>0, b$ is a local minimum.

