Math 5B: Answers to Midterm Review Problems

1. (a) $\lim_{(x,y)\to(1,0)} e^{-\frac{x}{y^2}} = 0$ (b) $\lim_{(x,y)\to(1,0)} \frac{xy(y-x+1)}{(x-1)^2+y^2}$ does not exist Along the line x = 1, the limit equals 1, but along the line y = 0, the limit equals 0.

2. The level curves of the surface are the ellipses
$$x^2 + 4y^2 = c$$
 for $c \ge 0$.
 $\nabla f = 2x \mathbf{i} + 8y \mathbf{j}$, so $\nabla f(2,0) = 4 \mathbf{i}$ and $\nabla f(\sqrt{2}, \frac{1}{\sqrt{2}}) = 2\sqrt{2} \mathbf{i} + 4\sqrt{2} \mathbf{j}$
 $\nabla_{\mathbf{v}} f(x,y) = \frac{2x + 16y}{\sqrt{5}}$

3.
$$dz = (\tan(xy) + yx \sec^2(xy) + 1) dx + (x^2 \sec^2(xy)) dy$$

At (1,0), $dz = dx + dy$; therefore, $f(0.9, 0.2) \approx f(1,0) + \Delta x + \Delta y = 1.1$.

4.
$$f_{rr} = 2\sin(2\theta); \ \frac{f_r}{r} = 2\sin(2\theta); \ \frac{f_{\theta\theta}}{r^2} = -4\sin(2\theta).$$
 Then, $\nabla^2 f = f_{rr} + \frac{f_r}{r} + \frac{f_{\theta\theta}}{r^2} = 0$

5.
$$\frac{\partial u}{\partial x} = \frac{e^x + x}{u}$$
 and $\frac{\partial^2 u}{\partial x^2} = \frac{e^x + 1}{u} - \frac{(e^x + x)^2}{u^3}$

6. (a)
$$(t\cos(t))^2 + (t\sin(t))^2 = t^2$$

(b) At the point $(0, \frac{\pi}{2}, \frac{\pi}{2}), t = \frac{\pi}{2}$, and $\mathbf{v}(\frac{\pi}{2}) = -\frac{\pi}{2}\mathbf{i} + \mathbf{j} + \mathbf{k}$
(c) $x(s) = -\frac{\pi}{2}s$
 $y(s) = s + \frac{\pi}{2}$
 $z(s) = s + \frac{\pi}{2}$

7.
$$y - z = 0$$

8. The minimum value of f is -1 (this occurs at the critical point (1,0)). The maximum value of f is 5 (this occurs at the boundary points (-1, 1) and (-1,-1)).

9. There are two critical points of f: a = (0,0) and b = (6,18). The matrix of second derivatives of f is $\operatorname{Hess}(f)(x,y) = \begin{bmatrix} 6x & -6 \\ -6 & 2 \end{bmatrix}$. At a, $\det[\operatorname{Hess}(f)(0,0)] = -36 < 0$, so a is a saddle point. At b, $\det[\operatorname{Hess}(f)(6,18)] = 36 > 0$, and since $f_{xx}(6,18) = 36 > 0$, b is a local minimum.