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Prime Factorization

The main result in Chapter 11 is the Fundamental Theorem of Arithmetic: This is the
statement that every integer n ≥ 2 has a unique prime factorization. Of course, to make this
statement true, we have to require that the prime factorization of a number lists the primes
in order: that is, the prime factorization of 20 is 2 · 2 · 5 and not 2 · 5 · 2 or 5 · 2 · 2. We can
now state this theorem precisely:

The Fundamental Theorem of Arithmetic (Theorem 11.1)
Let n be an integer with n ≥ 2. Then, there are unique prime numbers satisfying p1 ≤ p2 ≤
... ≤ pk such that n = p1 · p2 · ... · pk.

Note: We have already shown in lecture that every integer n ≥ 2 has a prime factoriza-
tion. To show uniqueness, simply assume there are two sets of prime numbers: p1 ≤ ... ≤ pk

and q1 ≤ ... ≤ ql such that n = p1...pk = q1...ql; then, prove that k = l and pi = qi for all
1 ≤ i ≤ k.

There are several consequences of the Fundamental Theorem of Arithmetic. Review the
statements and proofs of Propositions 11.1, 11.2, and 11.4 in the book, and notice that
many of the proofs follow by writing down prime factorizations for all the numbers involved
and using uniqueness to match up the terms on each side. One of these useful consequences
(Prop. 11.2(iii)), is the fact that (for a, b ≥ 1) lcm(a, b) = ab/hcf(a, b). (Recall that we were
also able to prove this without using prime factorization! See Exercise #4.)

A Diophantine equation is an equation for which the solutions are required to be in-
tegers. For instance, in Chapter 10, we learned that linear Diophantine equations of the
form d = sa + tb can be solved if d = hcf(a, b) (or even if hcf(a, b) | d). Once we have a
solution of this equation, we have infinitely many. In fact, we proved the following theorem
in class about the general form of the solution:

Theorem Let a, b ∈ Z and let d =hcf(a, b). Since d | a and d | b, there exist a′, b′ ∈ Z
such that a = a′d and b = b′d. Assume that we know one solution (so, to) to the linear
Diophantine equation d = sa + tb. Then, every solution of the equation d = sa + tb is of the
form

s = so + nb′ and t = to − na′ for n ∈ Z.



Proof: First, we note that a′ and b′ are coprime (prove this!) The following simple computa-
tion shows that, given any n, s = so + nb′ and t = to − na′ is a solution of the Diophantine
equation:

(so + nb′)a + (to − na′)b = (soa + tob) + n(b′a− a′b) = d + n(b′a′d− a′b′d) = d.

On the other hand, assume we are given a solution s, t ∈ Z of the equation d = sa + tb. We
need to prove that there exists an n ∈ Z such that s and t are of the form given above. Since
we have both d = soa + tob and d = sa + tb, we subtract:

0 = (so − s)a + (to − t)b = ((so − s)a′ − (t− to)b
′)d.

Since we know that d ≥ 1, this means that (?) a′(so − s) = (t − to)b
′. Therefore, we know

that b′ | a′(s − so). Since b′ and a′ are coprime, we must have b′ | (s − so). In other words,
there exists an n ∈ Z such that s = so + nb′. We can plug this into the equation (?) and
solve for t: t = to − na′. Therefore, the solution s and t is of the form given above. �

Example How many ways can you pay for an item worth $2.65 using only quarters and
dimes? Use the general form of the solution to the equation 10s + 25t = 265 to prove there
are 5 positive solutions. (You should find that (s, t) is (4, 9), (9, 7), (14, 5), (19, 3), or (24, 1).)

Of course, it’s much harder to determine if non-linear equations have solutions or not! As
an example from your book (pg. 95), Proposition 11.4 (the fact that if a product ab is an nth

power, then each of a and b must be an nth power) is useful in proving that 4x2 = y3 +1 has
a unique solution (namely, x = 0 and y = −1). By the way, can you think some examples
for Proposition 11.4? That is, think of integers a and b such that ab is a perfect square (or
perfect cube, etc).

Congruence

Definitions Let m ∈ N.

• For any a, b ∈ Z, we say “a is congruent to b modulo m” if m | (b− a). In symbols,
we write this as a ≡ b mod m.

• We can use congruence to define a system Zm called “the integers modulo m.” Zm

is defined to be a set with m elements: {[0], [1], [2], ..., [m − 1]}. We also define the
operations + and × on the elements of this set: For any [x], [y] ∈ Zm, find the usual
sum x+y. This number is congruent to one (and only one) of the numbers 0, 1, ...,m−1
modulo m (see Proposition 13.1 – note that it follows directly from the definition of
modulo m and from the division algorithm), so we find 0 ≤ z < m such that x+ y ≡ z
mod m. Then, we define [x] + [y] = [z] in the system Zm. We do the same thing for
multiplication: we define [x][y] = [w] if xy ≡ w mod m.



The symbol “≡ mod m” acts a lot like a regular equal sign: See Proposition 13.2. For
instance, we can add and multiply the same thing on both sides: See Proposition 13.3 (and
13.4, which follows by just repeatedly applying Proposition 13.3). This means we can per-
form arithmetic on congruence equations: For example, once we know 6 ≡ 36 mod 10 and
7 ≡ −3 mod 10, we can add these two equations to find that 13 ≡ 33 mod 10, or multiply
them to find that 42 ≡ −108 mod 10. The one thing we have to be careful about is that
we can’t necessarily divide! Even though 6 ≡ 36 mod 10 and 6 ≡ 6 mod 10, it is not true
that 6/6 = 1 will be equal to 36/6 = 6 modulo 10. However, we can divide in the following
special case:

Proposition 13.5
(1) Let a and m be coprime integers. If x, y ∈ Z are such that xa ≡ ya mod m, then x ≡ y
mod m.

(2) Let p be a prime number, and let a ∈ Z be such that p - a. If x, y ∈ Z are such
that xa ≡ ya mod m, then x ≡ y mod m.

In other words, we can divide an equation on both sides as long as we divide by some-
thing coprime to the number m. The proof follows from a theorem we already know about
division and coprime numbers (see the book for a detailed proof.) Similarly, the next propo-
sition follows from the definition of congruence modulo m and our previous theorems about
when d = sa + tb has solutions:

Proposition 13.6
Let m ∈ N and let a, b ∈ Z. The congruence equation ax ≡ b mod m has a solution x ∈ Z
if and only if hcf(a, m) | b.

Proof: Let d =hcf(a, m).
We first prove the (⇒) direction. Assume that there exists x ∈ Z such that ax ≡ b mod m.
Then, by the definition of congruence, m | (b− ax). In other words, there exists q ∈ Z such
that b− ax = qm. Since d | a and d | m, it follows that d | (ax + qm); i.e., hcf(a, m) | b.
We now prove the (⇐) direction. Assume that d | b. Therefore, d = kb for some k ∈ Z.
Since d = hcf(a, m), we know that there exist integers s, t ∈ Z such that d = sa+ tm. Then,
b = kd = (ks)a + (kt)m. We see from this equation that (ks)a ≡ b mod m. Therefore, we
have found a solution x = ks of the congruence equation. �

Fermat’s Little Theorem
Let p be a prime number and let a ∈ Z be such that p - a. Then ap−1 ≡ 1 mod p.

This tells us that many equivalence relations (that would otherwise take a lot of arith-
metic to check) are true! For instance, it must be true that 30396 ≡ 1 mod 97. There are
several simple consequences of Fermat’s Little Theorem:



Corollary 1 Let p be a prime number and let a be any integer. Then ap ≡ a mod p

Proof: There are two cases: either p | a or p - a. In the case p | a, then clearly ap ≡ a ≡ 0
mod p. In the case p - a, Fermat’s Little Theorem applies and we know that ap−1 ≡ 1
mod p. Multiplying both sides of this equation by a yields ap ≡ a mod p. �

Corollary 2 Let p be a prime number. If [a] is any non-zero number in Zp, then there
exists a number [b] in Zp such that [a][b] = 1. (In other words, there exists an inverse of the
number [a] in Zp!)

Proof: If [a] 6= [0], then we know 0 < a < p. Therefore, p - a. Find 0 ≤ b < p such
that b ≡ ap−2 mod m. From Fermat’s Little Theorem, we know that [a][b] = [1] (since
ab ≡ a · ap−2 ≡ ap−1 ≡ 1 mod p). �

Proposition 14.1 Let p and q be distinct prime numbers. Let a ∈ Z be such that p - a
and q - a. Then, a(p−1)(q−1) ≡ 1 mod (pq).

See the book for the proof, which follows from using Fermat’s theorem twice to find that
a(p−1)(q−1) is congruent to 1 both modulo p and modulo q. Fermat’s theorem also gives us a
method that we can sometime use to test that a large number is not prime:

Fermat’s Test for Primes Fix p, a ∈ Z with 0 < a < p. If ap−1 6≡ 1 mod p, then p
is not prime.

Proof: Fermat’s theorem tells us that the statement “if p is prime, then ap−1 ≡ 1 mod p” is
true; this theorem is the contrapositive. �

Finally, Fermat’s theorem gives us a procedure for calculating kth roots modulo m.

Proposition 14.2
Let p be a prime number, and let k ∈ N be coprime to p− 1. Then,

(i) There exists s ∈ N such that sk ≡ 1 mod (p− 1)
(ii) For any b ∈ Z such that p - b, xk ≡ b mod p has a unique solution satisfying

0 < x < p.
In particular, we know that the solution x ≡ bs mod p.

The proof of this proposition tells us exactly what to do to find the solution x: First,
find positive integers s and t that solve the equation sk− t(p− 1) = 1. (We can do this since
k and p− 1 are coprime and both positive.) Clearly s satisfies sk ≡ 1 mod (p− 1). Then,
simply show that bs mod p is the only possible solution of xk ≡ b mod p:

It is a solution since (bs)k ≡ bsk ≡ b1+t(p−1) ≡ b(bp−1)t ≡ b mod p, where the last step
follows by the corollary to Fermat’s theorem. Moreover, any solution x must satisfy xp−1 ≡ 1
mod p (again by Fermat’s theorem; notice that since p - b, we know that p - x.). Show that
this implies x ≡ bs mod p. This proves that bs mod p is the only solution modulo p.



Examples These are all examples from lecture. See if you can answer them without looking
back at your lecture notes.

1. If today is Tuesday, what day will it be in 3118 days from now?

2. What is the remainder when 237 is divided by 7?

3. What is the remainder when 239 is divided by 13?

4. What is the remainder when 410 · 77 is divided by 5?

5. Show that 43296 × 1742 − 51436 cannot be equal to 74907256 by “casting out the
nines.”

6. Find all solutions to 4x ≡ 2 mod 6.

7. Find all solutions to 2x = 1 in Z4.

8. Find all solutions to 20x ≡ 8 mod 44.

9. Find [2]−1 in Z7.

10. Find [2]−1 in Z31.

11. Find all solutions to x7 + x3 + 2x2 + 4 ≡ 0 mod 7.

12. Can you use Fermat’s test to determine whether or not 1479 is prime?

13. Can you use Fermat’s test to determine whether or not 561 is prime?

14. Solve x25 = 3 mod 37.


