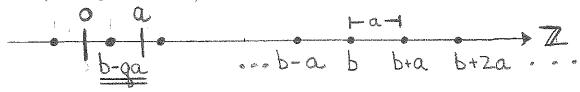
Math 8: The Division Algorithm

Spring 2011; Helena McGahagan

THE DIVISION ALGORITHM Let $a \in \mathbb{N}$. Then, for any $b \in \mathbb{Z}$, there exist unique integers q and r such that b = qa + r and $0 \le r < a$.

The idea for the proof is to consider all the possible values of b-xa, where x is an integer, then take the value that's closest to zero and positive. This should give us the right remainder r (see the picture below.)



Proof: Consider the set

$$S = \{b - xa : x \in \mathbb{Z} \text{ and } b - xa \ge 0\}.$$

Notice there are always elements in S: If $b \ge 0$, then $b \in S$ and if b < 0, then $b - ba \in S$ (show this!) Therefore, S is a non-empty set consisting of non-negative integers, so we can take the smallest number $r \in S$. (This is the well-ordering property again! See the lecture notes on the proof that there are infinitely many primes.) From the definition of S we know that r = b - qa for some integer q and also that $r \ge 0$. Now, we have found integers r and q that solve b = qa + r, and we know $0 \le r$. We still need to show that the inequality r < a holds. We do this by contradiction:

Assume that $r \ge a$. Consider the number r' = b - (q+1)a. Since $r' = b - (q+1)a = (b-qa) - a = r - a \ge 0$, we see that $r' \in S$. However, r' = b - (q+1)a < b - qa = r since $a \in \mathbb{N}$. This is a contradiction since r was chosen to be the smallest element of S.

So far, we have shown there exists a solution $q, r \in \mathbb{Z}$ satisfying the equation b = qa + r and the inequality $0 \le r < a$. To show uniqueness, we assume there are two such solutions, and prove that they must be the same ; Assume there exist $q_1, r_1 \in \mathbb{Z}$ and $q_2, r_2 \in \mathbb{Z}$ such that

$$b = q_1 a + r_1$$
 and $0 \le r_1 < a$
 $b = q_2 a + r_2$ and $0 \le r_2 < a$

Assume that $r_1 \neq r_2$. Then we may assume, without loss of generality, that $r_1 > r_2$ (if it is instead the case that $r_2 > r_1$, the proof is exactly the same, just with the indices swapped.) Subtracting the two equations, we find that $0 = (q_1 - q_2)a + (r_1 - r_2)$ and $0 < r_1 - r_2 < a$. This equation becomes $r_1 - r_2 = (q_2 - q_1)a$, so we see that $a \mid (r_1 - r_2)$. Since $a \in \mathbb{N}$, a > 0, and we also know $r_1 - r_2 > 0$. Therefore, we have from a proposition prove in lecture that $a \leq r_1 - r_2$, a contradiction. This means our assumption that $r_1 \neq r_2$ is false, so we must have $r_1 = r_2$. Now, we have (again from subtracting the two equations) that $(q_1 - q_2)a = 0$. Since a > 0, this implies that $q_1 = q_2$. \square