Math 8: Induction

Spring 2011; Helena McGahagan

1. Let $f(x)=3 x+5$ and let $g(x)=3(x-2)+8$. What's wrong with the following proof?

Fix any integer $n \geq 1$. Assume that $f(n)=g(n)$. Then, $g(n+1)=3((n+1)-2)+8=$ $g(n)+3=f(n)+3=(3(n)+5)+3=3(n+1)+5=f(n+1)$. Therefore, by induction, we have proven $f(n)=g(n)$ for all $n \in \mathbb{N}$.
2. Prove that, for every integer $n \geq 1$,

$$
\sum_{k=1}^{n} k^{5}=\frac{n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)}{12}
$$

3. Prove that, for any fixed real numbers a and $r \neq 1$ that

$$
a+a r+a r^{2}+\ldots+a r^{n-1}=a\left(\frac{r^{n}-1}{r-1}\right)
$$

is true for all $n \in \mathbb{N}$.
4. Prove that for all $n \geq 1,8^{n}-3^{n}$ is divisble by 5 .

