Math 8: Integers

Spring 2011; Helena McGahagan

1. Let $a, b \in \mathbb{Z}$. Write the definition of the highest common factor of a and b. Then, negate this definition.
2. (a) Let $a, b, d \in \mathbb{Z}$. Consider the equation $a s+b t=d$. We want to find integer solutions to this equation (i.e., find $s, t \in \mathbb{Z}$). We have a theorem (a consequence of the Euclidean algorithm) that gives a condition on d that guarantees it is possible to find solutions. What is the condition?
(b) Prove: If $a, b \in \mathbb{Z}$, then any common factor of a and b divides $\operatorname{hcf}(a, b)$.
(c) Consider the equation in part (a) again. If we have a solution $\left(s_{o}, t_{o}\right)$ (so these numbers satisfy the equation $a s_{o}+b t_{o}=d$), we have infinitely many solutions ... can you find all of them?
3. A warehouse has two trucks; one can hold 28 boxes, and one can hold 34 . If the warehouse only sends out the trucks full, and returns them empty, can it move 844 boxes from the warehouse to a store? How many different ways can this be done?
4. Gear A turns at two revolutions per minute. Gear A has 32 teeth and is meshed into Gear B which has 120 teeth. How often will both gears be simultaneously back in their starting positions?
5. If $a c \mid b c$ and $c \neq 0$, prove that $a \mid b$.
6. Let $a, b, d \in \mathbb{Z}$. Prove that $\operatorname{hcf}(a d, b d)=|d| \operatorname{hcf}(a, b)$. (You may assume $d \neq 0$ and a, b are not both 0.)
