Math 8: Quantifiers

Spring 2011; Helena McGahagan

1. Consider the following statements:

$$
\begin{aligned}
& P: \forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text { such that } f(x)=y \\
& Q: \exists y \in \mathbb{R} \text { such that } \forall x \in \mathbb{R}, f(x)=y
\end{aligned}
$$

(a) Write the negation of each statement.
(b) Whether or not P and Q are true depend on what f is. What do you need to know about about f to conclude P is true? What do you need to know to conclude that Q is true?
2. (a) Define $A \subseteq B$. Negate this statement
(b) Define $A=B$. Negate this statement.
(c) Negate: $\forall n \in \mathbb{Z}, n^{2}<e$ or $n^{2}>\pi$. Which is true - the original statement or its negation? How can you prove it?
(d) Negate: $\forall n \in \mathbb{Z}$, if $n<0$, then $n+5>0$. Which is true - the original statement or its negation? How can you prove it?
3. Write the following statements (from your homework) in symbols, then write their negations.
(a) If n is an integer such that n^{2} is even, then n is even.
(b) The number 8881 has a prime factor that is at most 89 .
(c) An integer that is equal to three consecutive integers multiplied together is divisible by 3 .

