Math 8: Homework 5

Review Chapter 14 and read Chapter 8.
Exercises: Hand in all of the following in lecture on Thursday, May $12^{\text {th }}$.

Chapter 14: $\# 2, \# 4, \# 6$

Chapter 8: \#2, \#10(a), \#12
I.
(a) Find $4^{403} \bmod 11$.
(b) Prove that for all $n \in \mathbb{Z}, n^{91}-n^{7}$ is divisible by 91 .
II.
(a) Find all integers k such that $2^{k} \equiv 1 \bmod 11$.
(b) Find all integers x such that $x^{11} \equiv 2 \bmod 59$. (Hint: 11 and 58 are coprime; start by finding positive integers s, t that solve $11 s-58 t=1$.)
(c) Use Fermat's little theorem to find the inverse of $[4]$ in \mathbb{Z}_{13}.
III. The notation $\prod_{r=1}^{n} a_{r}$ is shorthand for the product of the numbers: $a_{1} \cdot a_{2} \cdot a_{3} \cdots a_{n}$.

Guess a simple formula (depending on n) for $\prod_{r=2}^{n}\left(1-\frac{1}{r^{2}}\right)$ and prove that your formula is correct.

