Let $\alpha=a d x_{1} \wedge d x_{2}$ and $\beta=b d x_{1}+c d x_{3}$ be forms on \mathbb{R}^{4}. Prove that $d(\alpha \wedge \beta)=d \alpha \wedge \beta+\alpha \wedge d \beta$.

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is C^{2} and $\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial^{2} y}=0$, prove that

$$
\iint_{D}|\nabla f|^{2}=\int_{\partial D} f \nabla f \cdot d s .
$$

Compute

$$
\int_{0}^{\infty} \int_{0}^{\infty} e^{-x y} \sin x d x d y
$$

Prove that if f, g, f^{2}, g^{2} are all Riemann integrable on $[a, b]$, then

$$
\left(\int_{a}^{b} f(x) g(x)\right)^{2} d x \leq\left(\int_{a}^{b} f(x)^{2} d x\right)\left(\int_{a}^{b} g(x)^{2} d x\right)
$$

Consider $R=[0,1] \times[0,1]$ and the function $f: R \rightarrow \mathbb{R}$ defined as follows:

$$
f(x, y)= \begin{cases}1 & x \text { irrational } \\ 2 \mathrm{y} & x \text { rational }\end{cases}
$$

(a) Show $\iint_{R} f(x, y) d x d y$ does not exist.
(b) What is the iterated integral $\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right) d x$?

Define the following function on $[0,1]: f(0)=0$, and for $\frac{1}{2^{n}}<x \leq \frac{1}{2^{n-1}}, f(x)=\frac{1}{2^{n}}$.
(a) Give two different reasons why the integral $\int_{0}^{1} f(t) d t$ exists.
(b) Can you find a formula for $F(x)=\int_{0}^{x} f(t) d t$?

Recall the definitions of the inner content and the outer content. If A, B are bounded subsets of \mathbb{R}, prove that:
(a) $\bar{c}(A \cup B)+\bar{c}(A \cap B) \leq \bar{c}(A)+\bar{c}(B)$
(b) $\underline{c}(A \cup B)+\underline{c}(A \cap B) \geq \underline{c}(A)+\underline{c}(B)$

Assume that f is Riemann integrable on a rectangle $R=[a, b] \times[c, d]$. Show that there exists a point $\mathbf{x}_{\mathbf{o}}$ in the interior of R such that

$$
\iint_{R} f(\mathbf{x}) d \mathbf{x}=f\left(\mathbf{x}_{\mathbf{o}}\right) \operatorname{vol}(R)
$$

Suppose f is defined on a neighborhood of the triangular region T defined by the vertices $(a, 0),(0, b)$, and $(0,0)$. Assume that $D_{1,2} f(x, y)$ exists and is continuous on T. Prove that

$$
\iint_{T} D_{1,2} f(x, y) d x d y=f(0,0)-f(a, 0)+a D_{1} f\left(x_{o}, y_{o}\right)
$$

for some point $\left(x_{o}, y_{o}\right)$ (such that $b x_{o}+a y_{o}=a b$).

We can parameterize part of the curve given by the equation $x^{3}+y^{3}=3 a x y$ by

$$
\gamma(t)=\left(\frac{3 a t}{t^{3}+1}, \frac{3 a t^{2}}{t^{3}+1}\right), t \in[0, \infty)
$$

Compute the area of the region this curve encloses.

Find the area of an ellipse $E=\left\{(x, y):\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \leq 1\right\}$ in as many different ways as you can think of!

Find the following line integral along a curve γ in \mathbb{R}^{3} from $(1,1,0)$ to $(2,3, \ln 2)$:

$$
\int_{\gamma} z y^{x}(\ln y) d x+z x y^{x-1} d y+\left(z e^{z}+y^{x}\right) d z
$$

Compute

$$
\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y
$$

Let A be a set such that for every nonempty (a, b) that intersects $[0,1],(a, b) \cap A \neq \emptyset$. If f is Riemann integrable and $f(x)=0$ for all $x \in A$, then $\int_{a}^{b} f=0$.

Prove that if g is a bounded function that is continuous on $[a, b]$ except at the point $c(a<$ $c<b$), then g is Riemann integrable.

