Practice Problems for Midterm III

1. Solve for x.
(a) $e^{x}=6$
(b) $7^{x+2}=8^{5 x}$
(c) $8=A \times 2^{x / K}$ (A and K are constants.)
2. A certain radioactive isotope has a half-life of 3 years. The initial mass of this isotope is 12 grams.
(a) What is the mass of the isotope 6 years later?
(b) Write an equation for the mass of the isotope t years later.
(c) How many years does it take for the mass of the isotope to reach 0.75 g ?
3. The distance a car travels is given by the formula $f(t)=t^{2}+2 t$. Some of the values of this function are given in the table below.

time (t)	1	1.1	1.5	2
distance $(f(t))$	3	3.41	5.25	8

(a) What is the average velocity of the car between (i) $t=1$ and $t=2$? (ii) $t=1$ and $t=1.5$? (iii) $t=1$ and $t=1.1$?
(b) Use the power rule to find the derivative $f^{\prime}(t)$.
(c) What is the instantaneous velocity of the car at the time $t=1$?
(d) When is the velocity of the car equal to 3?
4. Find the derivative $f^{\prime}(x)$ of each of the following functions.
(a) $f(x)=3 x^{3}+2 x^{2}+5$
(b) $f(x)=x^{-\frac{3}{5}}$
(c) $f(x)=3 e^{2 x}$
(d) $f(x)=\frac{1}{\sqrt{x}}(x+1)$
5. Find the equation of the tangent line to the curve $y=3 x^{2}+x$ when $x=1$.
6. Use the tangent line approximation to the curve $y=e^{x}$ at $x=1$ to approximate the value of $e^{1.2}$.
7. If the temperature in Santa Barbara in the morning t hours after 6 am is given by the formula $f(t)=50+2 t^{\frac{3}{2}}$, how quickly is the temperature increasing at 10 am ?

