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BLOCH THEORY-BASED GRADIENT RECOVERY METHOD FOR
COMPUTING TOPOLOGICAL EDGE MODES IN PHOTONIC
GRAPHENE

HAILONG GUO*, XU YANGT, AND YI ZHU?

Abstract. Photonic graphene, a photonic crystal with honeycomb structures, has been inten-
sively studied in both theoretical and applied fields. Similar to graphene which admits Dirac Fermions
and topological edge states, photonic graphene supports novel and subtle propagating modes (edge
modes) of electromagnetic waves. These modes have wide applications in many optical systems. In
this paper, we propose a novel gradient recovery method based on Bloch theory for the computa-
tion of topological edge modes in the honeycomb structure. Compared to standard finite element
methods, this method provides higher order accuracy with the help of gradient recovery technique.
This high order accuracy is highly desired for constructing the propagating electromagnetic modes
in applications. We analyze the accuracy and prove the superconvergence of this method. Numerical
examples are presented to show the efficiency by computing the edge mode for the P-symmetry and
C-symmetry breaking cases in honeycomb structures.

AMS subject classifications.
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1. Introduction. Graphene has been one of the popular research topics in dif-
ferent theoretical and applied fields in the past two decades . Its success inspires
a lot of analogs (referred to as “artificial graphene") which are two-dimensional sys-
tems with similar properties to graphene [17,[22/[27,28/[311[32]. Among these analogs,
Photonic graphene, a photonic crystal with honeycomb structures, has attracted a
lot of interest recently . Similar to graphene which admits Dirac Fermions
and topological edge states, photonic graphene supports novel and subtle propagating
localized modes of electromagnetic waves. These modes are the main research objects
in topological photonics and have large applications in many optical systems ,
and thus it is crucial to understand such interesting propagating modes. This brings
opportunities and challenges to both applied and computational mathematics.

The propagation of electromagnetic waves in media is governed by the Maxwell
equations in three spatial dimensions. Thanks to the symmetries of photonic crystals,
the in-plane propagation of electromagnetic waves can be reduced to the following
eigenvalue problem in L2(R?) [1§],

LYY =-V - WExVY=FEV, xcR% (1.1)

Physically, ¥(x) represents the propagating mode of electromagnetic waves, the eigen-
value F is related to the frequency of the wave, and the positive definite Hermitian
matrix function W(x) corresponds to the material weight of the media; see for
details.
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If the medium is a perfect photonic crystal, the material weight W (x) is periodic.
In applications, a bulk photonic crystal is often modulated by different types of defects
which break the periodicity of the medium. For instance, in this work, we will consider
a photonic graphene modulated by a domain wall defect. Under proper assumptions
on W (x), properties of electromagnetic modes in photonic graphene can be analyzed,
for example, in 18], however, in general one needs to resort to numerical computation
to investigate the existence and study the properties of electromagnetic modes.

The numerical challenge of the eigenvalue problem in photonic lattice lies in
the lattice structure. For bulk geometry, W (x) is periodic and the eigenfunction ¥ is
semi-periodic (periodic up to a phase) in each lattice, and thus spectral method can
not be directly applied unless one applies the Bloch theory first [6]. However, when
one introduces the domain-wall modulated defect to break the symmetry of geometry
which leads to the appearance of edge modes, the spectral method no longer works
due to the loss of symmetry and semi-periodic boundary conditions in the lattice.
Since £ has a divergence form, finite element method comes to be a natural choice.
In applications, it is also very important to accurately compute the mode ¥(x) and its
gradient in order to construct the full electromagnetic fields under propagation [18|,
and therefore a finite element method with high order accuracy in gradient is desired
for the computation of .

Gradient recovery methods are one of the major postprocessing techniques based
on finite element methods, which are able to provide superconvergent gradient and
asymptotically exact a posteriori error estimators |24[5[7[23}134136], anisotropic mesh
adaption [10,/11}|16], and enhancement of eigenvalue approximation [14}25,[30]. Re-
cently, recovery techniques are used to construct new finite element methods for higher
order partial differential equations [8,[15]. A famous example of gradient recovery
methods is the Superconvergent Patch Recovery (SPR) proposed by Zienkiewicz and
Zhu [35], also known as ZZ estimator, which has become a standard tool in many
commercial Finite Element software such as ANSYS, Abaqus, and LS-DYNA. An im-
portant alternative is the polynomial preserving recovery (PPR) proposed by Zhang
and Naga [33|, which improved the performance of SPR on chevron pattern uniform
mesh. It has also been implemented by commercial Finite Element software COM-
SOL Multiphysics as a superconvergence tool. However, direct application of gradient
recovery methods to leads to huge computational cost due to the existence of
lattice structure.

In this paper, we consider the honeycomb lattice structure and develop a gradient
recovery method based on Bloch theory. We apply the Bloch theory in the direction
that has no domain-wall modulated defect, and then use the gradient recovery method
to solve the eigenvalue problem for each wave number. Compared to standard finite
element methods, this method provides higher order accuracy with the help of gradient
recovery technique. We analyze the accuracy and prove the superconvergence of this
method. We also compute the edge modes for the P-symmetry and C-symmetry
breaking cases in honeycomb structures to show the efficiency of the method. Our
results are consistent with the analytical results given in |18].

The rest of the paper is organized as follows. In Section [2| we introduce the
problem background on photonic graphene, Dirac points and edge modes and the
Bloch-Floquet theory; In Section [3] we propose the gradient recovery method based
on Bloch theory, analyze the accuracy and prove the superconvergence of the method;
numerical examples of computing P-symmetry and C-symmetry breaking cases in
honeycomb structures are presented in Section [ to show the efficiency, and we give
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conclusive remarks in Section

2. Preliminary. In this section, we summarize basic properties of the photonic
graphene, Dirac points and edge states as a description of problem background, and
refer interested readers to [18] and references therein for more details.

2.1. Honeycomb-structured material weight. A perfect photonic graphene
has a honeycomb structured material weight, i.e., W(x) = A(x), with the honeycomb
structured material weight A(x) mathematically satisfies

1. A(x) is Hermitian, positive definite, bounded away from zero and infinity;
2. A(x+v) A(x) for all x € R? and v € Ay;
A(—x) = ( ); (PC-invariance)
A(R*x) = R*A(x)R; (R-invariance)

Here, the honeycomb lattice Ay is a hexagonal lattice generated by, e.g.,

V3 V3
2 2
V1 = ) Vo = ;
1 1
2 2

x — Rx is the mapping on R? which rotates a vector clockwise by 120° (27/3) about
x=0:

=
o
w

R= (2.1)

N V)
S
[

We have also used the the conventions: P stands for the parity inversion operator, i.e.,
P[f](x) = f(—x); C stands for the complex conjugate operator, i.e., C[f](x) = f(x);
R stands for the rotation operator, i.e., R[f](x) = f(R*x).

REMARK 2.1. Condition 1 is the basic requirement for a loss-free material weight,
which ensues that the second order operator associated with the material weight, L4 |
is self-adjoint and elliptic. Condition 2 implies that the Bloch theory applies and Con-
ditions 3, 4 imply the commutators between L4 and the symmetry operators vanish,

e., [PC,LA] =0 and [R,LA] = 0.

Simply speaking, photonic graphene is just an optic media with a hexagonally
periodic, PC— and R-invariant material weight. A honeycomb structured material
weight A(x) defined above is generically anisotropic and complex. The full character-
ization of its Fourier series is given in Section 3.4 of [18]. The simplest nonconstant
honeycomb structured media containing the lowest Fourier components is of the form

A(x) =aol + C 1% + RCR* e¥2* 4 R*CR ¢l("ki—ka)x

+CT e ™ * 4 RCTR* e > 4 R*CTR elatke)> 22
where C' could be any real 2x 2 matrix and ay is a positive constant ensuring that A(x)
is positive definite. If C' is symmetric, then A(x) is real. For most natural materials,
the material weight is real. However, for meta-materials, the effective material weight
can be complex, see for instance [17]. If C' = al,, then A(x) represents an isotropic
material.



2.2. Bloch-Floquet theory and Dirac points. For the hexagonal lattice, we
define the dual lattice

A} = 7k, & Tk,

where the dual basis vectors are

1 1
4 2 4 2
K = — ’ ky = —
VER W V3 \ »3
2 2

REMARK 2.2. The dual lattice A} is invariant under the rotation R. To see this,
we first define ks = —ki —ks. Then it is easy to check that Rk; = ko and Rks = k3.
Consequently, RA} = Aj.

According to the Bloch-Floquet theory on the elliptic operator with periodic co-
efficients, the Bloch modes propagating in a perfect photonic graphene satisfy

LAD(x) = Ed(x),

B(x+v) =e*VB(x), veEAM, 23)

Here the quasi-momentum k takes the value in the Brillouin Zone Bj. For each k,
the above eigenvalue problem has discrete spectrum Fj(k) < Eo(k) < Es(k) < ---
and the corresponding eigenfunctions, referred to as Bloch modes, are of the form
®;(x) = ek*g;(x), j=1,2,--- with ¢;(x) are A}, periodic.

Let K = £(k; —k;) and K’ = —K. It is shown in [18] that if A(x) is a honeycomb
structured material weight, there exists two dispersion bands Fj(k) and Fpy;(k) in-
tersect each other at K and K’ and the dispersion relations are conical nearby. These
degenerate points at the dispersion bands, (Fy(K,),K,), K, = K,K’, are referred
to as the Dirac points. Dirac points are unstable under PC-symmetry breaking per-
turbations. Namely, if £4 has a Dirac point at K, with the Dirac energy Ep, then
LATB = V. (A(x) + §B(x))V has no Dirac points at K, near the energy Ep
provided B(x) is NOT PC—invariant. Specifically, the two intersecting bands at K,
separate and a local spectrum gap opens. There are two simple ways to break the
PC-symmetry:

(1) B(x) preserves C-symmetry but break the P-symmetry. In other words, B(x) is
real and odd. A simple example is
B(x) = [sin(ky - x) + sin(ks - x) + sin(ks - x)]1, x2 (2.4)

2

(2) B(x) preserves P-symmetry but break the C-symmetry. In other words, B(x) is
purely imaginary and even. A simple example is

B(x) = [cos(ky - x) + cos(ks - x) + cos(ks - x)]o (2.5)

—i

where o9 is the second Pauli matrix, i.e., 09 = <? 0

) with i as the imaginary
unit.

2.3. Domain wall modulated photonic graphene. An interesting phenomenon
of the perfect photonic graphene is the conical diffraction, i.e., the wave packets as-
sociated with the Dirac points propagate conically in the media [9,[18]. Due to the
potential applications, localized and chiral propagations of electromagnetic waves is
one of the main research topics related to the so-called topological materials. This
can be achieved in the photonic graphene modulated by a domain wall. Specifically,
we have the following setup:



1. Perfect photonic graphene: Let A(x) be a honeycomb structured material
weight. Let K, = K or K’, and assume that (K,, Ep) is a Dirac point of the
operator L4 = -V - AV.

2. Two perturbed bulk mediums with opposite topological phases: Let B(x) be
a Ap—periodic, 2 x 2 Hermitian matrix such that B(—x) = —B(x). The
perturbed operator £LA+9=B = —V.[A(x) 4 61s B(x)]V has no Dirac points
near (K,, Ep) and a local spectrum gap opens.

3. connecting two mediums with a domain wall: Let n(¢) is a real bounded
function with n(+00) = +7, for instance, n(¢) = 7o tanh(¢). The two
perturbed bulk mediums are connected by the domain wall n(¢) along one
direction (referred as the edge), for example, the normal direction of the
edge is ky. In other words, the material weight under consideration becomes
W(x) = A(x) + dn(dks - x) B(x).

Our model of a honeycomb structure with an edge is the domain-wall modulated
operator:

LY = -V - [A(x) + 0n(dks - x) B(x)] V. (2.6)

The operator £ breaks translation invariance with respect to arbitrary elements of

the lattice, Aj, but is invariant with respect to translation by vi, parallel to the edge

(because ko - vy = 0 in (2.6)). Associated with this translation invariance is a parallel

quasi-momentum, which we denote by k. Note that & takes that value in [0, 27].
Edge states are solutions of the eigenvalue problem

EW\IJ(X,IQH) = E(kH)\I/(X,kH), (27)
U(x+ vy k) = R (x; k), (propagation parallel to the edge, Rvy), (2.8)
U(x; k) =0 as |x-ks| — o0, (localization tranverse to the edge, Rvy). (2.9)

We refer to a solution pair (E(k)), ¥(x; k) of [2.7)-([2.9) as an edge state or edge
mode.

In [18], the existence of the edge states at k| = K, - vy in the parameter regime
0 < 1 is proved and the asymptotic forms of the edge states are given. However,
in applications, ¢ is not small and all edge states (not just near K, - vq) are useful.
Analytical techniques can not achieve this object, and thus numerical methods are
required.

3. Gradient recovery method. In this section, we introduce the Bloch-theory
based gradient recovery method to solve (2.7))-(2.9).

3.1. Simplified model problem. Let ¥ = R?/Zv; be a cylinder. The funda-
mental domain for ¥ is Qx = {r1vi +7ve : 0 <7 < 1,7 € R}, Let ¥(x;3k)) =

Lk
elzfurkl'xp(x; kj). Then (2.7)—(2.9) is equivalent to the following eigenvalue problem
LY (ky)p(x; k) = E(ky)p(x; ky), (3.1)

p(x+vi; k) = p(x; k),
p(x; k) — 0 as |x - k| — oo.

where

£V (k) = f(V+i§—‘7lrk1)~W(V+i§—7”rk1). (3.4)
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It is casy to see that £ (k) is a self-adjoint operator.
To compute the edge mode, it suffices to consider the spectrum of the operator
LY (k) on the truncated domain

QgﬁLE{7'1V1+T2V2Z0§T1S].,*LSTQSL}. (35)

Let W*P(Qy, 1) be the Sobolev spaces of functions defined on Q. ;, with norm || - ||,
and seminorm | - | . To incorporate the boundary conditions, we define

WPl = {0 : 0 € WHP(Qy 1) and ¥(x + v1) = ¥(x)}. (3.6)
and
Wity ={¥: ¥ € WP (Qx, 1) and W(£Lvy) = 0}. (3.7)
When p = 2, it is simply denoted as Héu or H%MO,

The variation formulation of is (3.1) (3.3) to find the eigenpair (E(k), ¥(x; k) €
R x H/i”,o such that

a(p,q) = E(ky)(p,q), Va € Hj, g, (3.8)

where the bilinear form a(-,-) is defined as

apa)= [ WOV +itklap(o) - (V4 itbk)glodx,  (39)

195587

and the inner product is defined as
pa)= [ paix. (3.10)
Qs

It is easy to see that the bilinear a(-,-) is symmetric and elliptic. According to the
spectral theory of linear operator, we know that has a countable sequence of
real eigenvalues 0 < Ey (k) < Ez(k)) < E3(kj) < --- — oo and the corresponding
eigenfunctions pi(x; k), p2(x; k), p3(x; k), - - - are assumed to satisfy

a (pi(x; ky), pi (% k) = Ei(ky) (pi(x: ky) 05 (%5 k) = 65

3.2. Finite element approximation. To simplify the imposing of the periodic
boundary, we shall consider the uniform triangulation of Q0 ;. To generate a uni-

form triangulation 7, with mesh size h = w of Qx 1, we firstly divide Qx ; into

2L N? sub-rhombuses with mesh size h = w and divide each sub-rhombus into two
triangles. We define the standard linear finite element space with periodic boundary
condition in vy as

Vi, ={veCQsy):qlr € P1(T),YT € T, and ¢(x+ v1) = q(x)}. (3.11)

with P, being the space consisting of polynomials of degree up to k and the corre-
sponding finite element space with homogeneous boundary condition in vy as

Vio = Vi N Hy o (3.12)
6



The finite element discretization of the eigenvalue problem (3.8) is to find the
eigenpair (Ey(k)), pr(x;k))) € R x Vj, o such that

a(pn,qn) = En(k))(Pr,qn), Van € Vayo. (3.13)

Similar as (3.8)), (3.13) has a finite sequence of eigenvalues 0 < Ey (k) < E2 5(k)) <
-+ < By, n(k)) and the corresponding eigenfunctions are assumed to satisfy

a (pin (%5 k1), pin (X5 k) = Ei(ky) (pon (%5 k) s pin (x5 k) = 6ij.

For the finite element approximation, the following error estimates is well estab-
lished in [4},/29]
THEOREM 3.1. Suppose p;(x; k) € H,?H. Then we have

Ei(ky) < Ein(ky) < Ei(ky) + Ch?; (3.14)
[pi = pinl < Chs (3.15)
Ipi — pinllo < Ch?. (3.16)

The following property of the eigenvalue and eigenfunction approximation will be
used in the analysis

LEMMA 3.2. Let (E(ky),p(x;k))) be the solution of of the eigenvalue problem
(13.8). Then for any q € H%H,o’ we have

a(p,q)

alp.a) llp — 4llg
lqll3

a3

alp—q,p—q)

— Bk = =

— E(ky) (3.17)

3.3. Superconvergent post-processing. To identify edge modes, we need to
compute a series of eigenvalue problems with higher accuracy for kj € [0,27]. To
achieve higher accuracy, we can use higher-order elements. But it will involve higher
computational complexity. To avoid the computational complexity, we use the linear
element and then adopt a recovery procedure to increase the eigenpair approximation
accuracy [25].

Let Gp, : Vi, — Vi x V, denote the polynomial preserving recovery operator
introduced in [24}|33]. For any function gy € V},, Grqp is a function in Vj, x Vj,. To
define Gy, it suffices to define the value of Gjqp, at every nodal point. Let N,
denote the set of all nodal points of 7;,. Note that N}, is the set of all vertices of 7j,.
For any z € N}, construct a local patch of the element K, which contains at least six
nodal points. The key idea of PPR is to fit a quadratic polynomial p, € P,(K,) in
the following least-squares sense

p-=arg min > (g —p)°(2) (3.18)
peP2(K) - e Nk,

Then the recovered gradient at z is defined as

(Gran)(z) = Vp.(2). (3.19)

The global recovered gradient is Gpqn = (Gran)(2)¢.(x) where {¢.} is set of nodal
basis of V},.



To improve the accuracy of eigenvalue approximation, we set ¢ = p, in (3.17))
which implies

En(ky) — E(ky) = a(p — pn,p — pn) — E(k))|lp — pall} (3.20)

It is obvious that the first term dominates in the eigenvalue approximation error. The
idea of |25] for Laplace eigenvalue problem is to subtract a good approximation of the
first term from both sides by replacing the exact gradient by recovered gradient. In
our case, it is much more complicated since the energy error contains both Vp and
p. Our idea is to only consider the leading part in the energy error . Thus, we define
the recovered eigenvalue as follows

E;(kl\) = En(k)) — |W2(Vpp, — Grow)llo- (3.21)

To show the superconvergence of the recovered eigenvalue, the following super-
closeness result is needed which can be found in [19]

LEMMA 3.3. Let Iyp be the interpolation of p into the finite element space Vy,. If
pE H,f”, then we have

a(p — Inp,qn) < CR?|plsllanlly, Van € Vio. (3.22)

Proof. We can prove the lemma use the similar idea in [19]. O

Based on the above lemma, we can show the superconvergence of recovered gra-
dient as following:

THEOREM 3.4. Let G}, be the polynomial preserving recovery operator defined in
the above. Then for any eigenfunction p;p corresponding to the eigenvalue Ej p(ky),
there exists an eigenfunction p; corresponding to E;(ky) such that

W2 (Vp; — Gupin)lo < Ch*[[pils. (3.23)

Proof. By (3.8) and (3.13]), we have

G(Pi,h — Di, (Zh)
=E; n(ky) (Pi,ns an) — Ei(ky) (pis qn) (3.24)
=E; n (k) (pi,n — pisan) + (Ein(k)) — Ei(k)))(pi, qn)-

It implies that

a(pin — Inpis qn)
=a(pi; — Inpi, qn) + Ein (k) (Pin, an) — Ei(ky)(pis qn)
=a(p; — Inpi, qn) + Ein (k) (Pin — pi> an) + (Ein(ky) — Ei(k))) (pis qn)
<Ch?||pillallanh;

(3.25)

where we have used the Theorem [3.1]and Lemma 3.3} Taking g, = p;n — Inp; implies
that

Ipin = Inpilly < CB®|[pills (3.26)
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Thus, we have

WY2(Vpi — Grpin)llo
<|WH2(Vp; — GrInpi)llo + WY 2(GrInpi — Grpin)lo

<I(Vpi — Gulnpi)llo + (Grlnpi — Grpin)llo (3.27)
<I(Vpi — GrIppi)llo + IV Inpi — pin)llo
<Ch?||pis.-

where we have use Lemma 4.3 in [13| and (3.26]). O
Using the above theorem, we can prove the following superconvergence result for
recovered eigenvalues

THEOREM 3.5. Let E; (k) be the approzimate eigenvalue of E;(ky). Then we
have

B (k) — Ei(ky)| < CR3|lps 13 (3.28)

Proof. By the Lemma and , we have
E; n(ky) — Ei(k))
=a(pi — PihsPh — Pin) — WA (Vpn — Grpn) |13 — Ei(ky)|lpi — pinllf
ik ik
= ——k1)(pi — pi,n), - k1)(pi —pin))—
(W(V + o )P —pin), (V + o 1)(Pi — pin))
IW2(Vpn = Grpn) 5 — Ei(ky)lipi = pinllp

ik
= (W(Vpi — Grpin), Vi — Grpin) — 77! (WN(pi — pin), ki(pi — pin)) +

. 2
lkH ﬂ

o (k1(pi = pi,n), WV (pi —pin)) + 12 (Wki(pi — pin), Ki(pi — pin)) +

IW2(Vpn — Gupw)lis — Ei(ky)llp: — pinlls

= (W(Vpi — Gupin), Vpi — Grpin) — 12]%! (WN(pi — pi,n) ki (pi — pi,n)) +
ik ki
o (k1(pi — pin), WV (pi — pin)) + 2 (Wki(pi — pi,n), Ki(pi — pin)) +
2Re (W (Vi — Grpin), Grpin — Vin) — Ei(ky)llpi — pinllg
<C ([IVpi = Gapinlls + 1Ipi — pipllolIV(pi — pip)llo
Ipi — pinlls + 1VPi — Gupinll§IVoin — Grpinlls + llpi — pisn
<Ch*||pi3.

3))

0

REMARK 3.1. We should point out that the error bound in (3.28|) is not sharp.
Our numerical results indicate that the real error bound should be O(h*).

3.4. Efficient Implementation. In this section, we present an efficient imple-
mentation of the proposed method. One of our key observation is that the gradient
recovery procedure is just two multiplications of a sparse matrix and a vector, which
can be done within O(N) operations. For a sake of clarity, we rewrite Gy, as

9



Gw
Gup = <G§§> . (3.29)

Notice that gradient recovery operator G, is a linear bounded operator from V}, to
Vi x V. In other words, G and Gz are both linear bounded operators from V}, to Vj,.
It is well known that every linear operator (linear transform) from one finite dimension
vector space to itself can be rephrase a matrix linear transform [3]. Suppose {¢;}¥;
is the standard nodal basis function for V},. Let b be the vector of basis functions,
ie. b= (¢1,---,¢n)T. Then for every function v, € V},, it can be rewritten in the
following form

N
vy = Zvi@ =vlb, (3.30)
1
where v = (vq, - ,UN)T and v; is the value of v;, at nodal point z;. Similarly, the
recovered gradient Gvj, can also be rephrase as
Grop = [Givn, Glvp] = vk b, vy b] (3.31)

where vy and vy are the vectors of recovered gradient at nodal points. Since G}, and
G? are two linear bounded operator Vj, to Vj,, there exist two matrices G§ € RN*N
and GY € RV*N guch that

vx = G{v and vy, = G{v. (3.32)

Here G§ and Gy, are called the first order differential matrices. From the definition
of polynomial preserving recovery, it is obvious G¥ and Gy, are both sparse matrices.
To efficiently implement the algorithm, we rewrite the bilinear form a(-,-) as

alpa) = [ WOV +inbe)p(x) - (V + il )a(x)dx
19597
=/ W(x)Vp(x) - Vg(x)dx—
19 W(x)Vp(x) - kig(x)dx+ (3.33)
T Jas, 1,

i% W(x)k1g(x) - Vp(x)dx+

k?
I

x)kiq(x) - kiq(x)dx.
471'292,[, ()1() 1()

195587

Let A, B, and C be the sparse matrices of the bilinear form fQE,L W(x)Vp(x) -

Vq(x)dx, sz . W(x)Vp(x)-kig(x)dx, and fQZ.L W (x)k1p(x)-kiq(x)dx, respectively.
Then the total sparse matrix can be represented as

2
sS—a-_ifigyifigr, Mg (3.34)
a o o 42 '
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In addition, we use M to denote the mass matrix.
The above algorithm can be summarized in Algorithm

Algorithm 1: Superconvergent post-processing algorithm for computing edge
mode

Generate a uniform mesh 7y;

Construct sparse matrices A, B, C, M, Gy, and Gy;

Let k = linspace(0, 27, K);

for j = 1:K do

Let k” =k(j);
k2
il

Form the big stiffness matrix S = A — i%”TB + i%"rBT + 1o
Solve the generalized eigenvalue problem Sv = Ej (k) Mv;
8 Compute the recovered gradient by doing two sparse matrix-vector
multiplications vy = GEv and vy = Gy v;

9 Update the eigenvalue

QR W N =

(=)

C;

-~

En(ky) = En(ky) = [IW'2(Vpn — Gl 0, -

10 end

From Algorithm |1} the cost of gradient recovery is about O(N) and the most
expansive part is computational of the generalized eigenvalue.

4. Numerical Examples. In this section, we present several numerical exam-
ples to show the efficiency of the proposed Bloch theory-based gradient recovery
method. Our method and analysis apply for any honeycomb structured media with
a domain wall modulation given in Section [2] The material weight is always of the
form

W(x) = A(x) + 0n(dks - x) B(x). (4.1)

In the numerical examples, A(x) is given in (2.2), B(x) is given in or and
7(¢) = tanh(¢). These simple choices of material weights are sufficient enough to
demonstrate our method and analysis. The first example is to numerically verify the
superconvergence of the method, and the other examples are devoted to the computa-
tion of edge modes for the P-symmetry and C-symmetry breaking cases in honeycomb
structures.

4.1. Verification of superconvergence. In this example, we present a com-
parison of eigenvalues in (2.7)-(2.9)) computed by the standard finite element method
and gradient recovery method, respectively. In this test, we take N = 20, 40, 80, 160,

_1
320, 640 and L = 10. A(x) is given in (2.2)) with ap = 23, C = ( 02 _01) B(x) is
2
given in (2.4). § = 2. Namely,

A(x) = [23 — cos(x - k1) — cos(x - ko) — cos(x - k3)] I, x2, (4.2)
B(x) = [sin(x - k1) + sin(x - ko) + sin(x - k3)] I, x2- (4.3)
We define the two following errors
|Ei,hj - Ei,hj+1‘
Ein ’
11

Err; =



and

~

|Ei,hj - Ei,hj+1|

v,
E

i,hjt1

In this test, we take k = 0.28k; and focus on the computation of the first six
eigenvalues. In Figure we plot the convergence rates for the relative error of
eigenvalues computed by the standard finite element method. It indicates that the
convergence rate is O(h?), which is consistent with the theoretical result in Theorem
In Figure[4.2] we plot the convergence rates for the relative error of the eigenvalues
computed by the Bloch theory-based gradient recovery method. It converges at the
superconvergent rate of O(h?). As explained in Remark it is better than results
predicted by Theorem [3:5] The comparison shows that the gradient recovery method
outperforms the standard finite element method in the several digits magnitude. In
the following examples, we shall only show the eigenvalues computed by the gradient
recovery method.
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Fig. 4.1: Convergence rates of the eigenvalues for the case (4.2)-(4.3) computed by
the standard finite element method.

4.2. Computational of edge modes for P-symmetry breaking. Here we
test the P-symmetry breaking case, i.e., B(x) is given in . In all the following
tests, we take the N = 64 and the mesh size is h = 6%1.

Test Case 1: In this test, we consider the case that

A(x) = [23 — cos(x - k1) — cos(x - ko) — cos(x - k3)] I, x2, (4.4)
B(x) = [sin(x - k1) + sin(x - ka) + sin(x - k3)] I, x2, (4.5)

with the parameter § = 6.
12
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Fig. 4.2: Convergence rates of the eigenvalues for the case (4.2)-(4.3) computed by
the Bloch-theory based gradient recovery method.

We firstly run our test with L = 10. We graph the first twenty-five eigenvalues
for k| € [0,27] in Figure from which one can see that the red line corresponding
to the 20" eigenvalue is isolated from other lines. Based on the analysis in [18],
this curve corresponds to the edge mode, and all other eigenvalues belong to the
continuous spectrum. In Figure[4.4] we show the contour graph of the modulus of the
19" 20" and 21" eigenvalues when k| = 2T In this graph and all the other contour
graphs in this paper , we select vy as z-axis and vy as y-axis. From Figure [£.4b] we
clearly obverse the 20" eigenfunction (edge mode) is periodic in v; and localized at
the center along va.

To make a comparison, we repeat our test for L = 15. In Figure [{.5 we show
the plot of the first thirty-five recovered eigenvalues. The edge mode is corresponding
to the 30" eigenvalue. From Figure we see more clearly that the eigenvalue is
localized at the center along vs.

Test Case 2: In this test, we consider the case that

A(x) =[4 —cos(x - ki) — cos(x - ko) — cos(x - k3)] I, x2, (4.6)
B(x) = [sin(x - k1) + sin(x - ko) + sin(x - k3)] I, x2, (4.7)

with the parameter § = 1.

We compute the edge mode with L = 10. The first twenty-five eigenvalues are
shown in Figure Similarly, we find that the 20" eigenvalue is isolated from other
eigenvalues, which is marked by ‘X’ and plotted in red. In Figure [I.8] we show the
contour of the module of the some eigenfunctions with k| = %”, which confirms that
the 20" eigenvalue is the edge mode.

13
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Fig. 4.3: Eigenvalues computed by gradient recovery methods for the P-symmetry
breaking case (4.4)-(4.5) with L = 10. The edge mode is corresponding to the line
marked by ‘X’.

4.3. Computation of edge modes for C-symmetry breaking. We consider
the C-symmetry breaking case. Specifically,

A(x) = [4 — cos(x - ky) — cos(x - ka) — cos(x - k3)|I, x2, (4.8)
B(x) = [cos(x - k1) + cos(x - ka) + cos(x - k3)]o2, (4.9)

and the parameter § = 1. In Figure we plot the first twenty-five eigenvalues
E; in terms of k. At the point kj = %’T, we observe that the 19t", 20" and 21"
eigenvalues are isolated from other eigenvalues. It looks like there are three edge
modes. To investigate the situation, we graph the contour of the module of the those
eigenfunctions in Figure From Figure [4.10] the 19" and 20" eigenfunctions are
localized at the boundary but the 21*" eigenfunction is localized at the center. Based
on the analysis in [18], the 19" and 20" eigenfunctions are the pseudo edge modes

and the only edge mode is the 21th eigenfunction.

4.4. Computation of the edge mode in the anisotropic case with C-
symmetry breaking. In this subsection, we consider the numerical results with
anisotropic coefficients. Specifically, A(x) is given in (2.2) with

a =10, C = (_01 _22> , (4.10)

B(x) = [cos(x - k1) + cos(x - ka) + cos(x - k3)]oa (4.11)

and the parameter § = 1. In Figure we plot the first twenty-five eigenvalues Ei’h
in terms of k. Similar to the numerical results in previous section, we observe that
19°2, 20", and 21" eigenvalues are isolated from other eigenvalues at kj = 2F

= .
14
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Fig. 4.4: Contour of the module of the eigenfunctions computed by gradient recovery
method with L = 10 for the P-symmetry breaking case (4.4)-(4.5) when kj = 2°. We
choose vy as z-axis and v; as y-axis. The 20th eigenfunction is the edge mode, which
is periodic in vy and localized at the center along v.

The red curve is the curve corresponding to the 21*" eigenvalue. In Figures
we draw the contour plot of the corresponding eigenfunctions when kj = =¢
We can see that the eigenfunctions corresponding to the 19" and 20" eigenvalues are
localized at the boundary, while the eigenfunction corresponding to the 21" eigenvalue
is localized at the center which is the edge mode.

5. Conclusion. Photonic graphene is an “artificial graphene" which admints
subtle propagating modes of electromagnetic waves. It is also an important topologi-
cal material which support topological edge states. These states propagates along the
edge without any back scattering when passing through a defect. So they have wide
applications in many optical systems. Unfortunately, only few analytical results which
work in a very narrow parameter regime have been given, see for example . How
to numerically compute these modes and associated gradients accurately to construct
the whole electromagnetic fields under propagation is a very important question in
applications. To solve this problem, we propose a novel superconvergent finite element
method based on Bloch theory and gradient recovery techniques for the computation
of such states in photonic graphene with a domain wall modulation. We analyze
the accuracy of this method and show its efficiency by computing the P-symmetry
and C-symmetry breaking cases in honeycomb structures. Our numerical results are
consistent with the analysis in . At present, this work only focuses on the static
modes. In the future, we shall study the dynamics of such modes. This requires us to
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Fig.

4.5: Eigenvalues computed by gradient recovery methods for the P-symmetry

breaking case (4.4)-(4.5) with L = 15. The edge mode is corresponding to the line
marked by ‘X’.

(1) recover the full electromagnetic fields from these modes computed by the super-
convergent finite element method; (2) compute the time evolution equation (Maxwell
equation). How to utilize the high accurate edge states to perform their dynamics
will be further investigated.
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Fig. 4.8: Contour of the module of the eigenfunctions computed by gradient recovery
method with L = 10 for the P-symmetry breaking case —@ when k| = 2?” We
choose vy as z-axis and vy as y-axis. The 20th eigenfunction is the edge mode, which
is periodic in v; and localized at the center along v.
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Fig. 4.9: Eigenvalues computed by gradient recovery methods for the C-symmetry
breaking case (4.8))-(4.9) with L = 10. The edge mode is corresponding to the line
marked by ‘X’.

(c¢) The 21th eigenfunction (d) The 22th eigenfunction

Fig. 4.10: Contour of the module of the eigenfunctions computed by gradient recovery
method with L = 10 for the C-symmetry breaking case 1) when k)| = 2?” We
choose vy as z-axis and vy as y-axis. The 21th eigenfunction is the edge mode, which
is periodic in v; and localized at the center along vs.
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Fig. 4.11: Eigenvalues computed by gradient recovery methods for the anisotropic C-

symmetry breaking case (4.10)-(4.11) with L = 10. The edge mode is corresponding
to the line marked by ‘X’.

(c) The 21th eigenfunction (d) The 22th eigenfunction

Fig. 4.12: Contour of the module of the eigenfunctions computed by gradient recovery
method with L = 10 for the anisotropic C-symmetry breaking case - when
k= 2?“ We choose v, as x-axis and v; as y-axis. The 21th eigenfunction is the edge
mode, which is periodic in vy and localized at the center along vs.
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