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In this article, we construct a C0 linear finite element method for two fourth-order eigenvalue problems: the
biharmonic and the transmission eigenvalue problems. The basic idea of our construction is to use gradient
recovery operator to compute the higher-order derivatives of a C0 piecewise linear function, which do
not exist in the classical sense. For the biharmonic eigenvalue problem, the optimal convergence rates of
eigenvalue/eigenfunction approximation are theoretically derived and numerically verified. For the trans-
mission eigenvalue problem, the optimal convergence rate of the eigenvalues is verified by two numerical
examples: one for constant refraction index and the other for variable refraction index. Compared with
existing schemes in the literature, the proposed scheme is straightforward and simpler, and computationally
less expensive to achieve the same order of accuracy.

Keywords: biharmonic eigenvalue; transmission eigenvalue; gradient recovery; superconvergence; linear
finite element.

1. Introduction

This article is concerned with the numerical approximation of two fourth-order eigenvalue problems.
The biharmonic eigenvalue problem describes the eigenmodes of a vibrating homogeneous isotropic
plate with constant thickness, and the transmission eigenvalue problem simulates the eigenmodes of
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C0 FEM FOR EIGENVALUE PROBLEMS 2121

the inverse scattering of acoustic waves. Recently, these two eigenvalue problems have attracted much
attention of researchers from both theoretical and computational fields (see Ciarlet, 1978; Canuto, 1978,
1981; Rannacher, 1979; Cakoni et al., 2007, 2009; Brenner & Scott, 2008; Colton et al., 2010; Ji & Sun,
2013; Ji et al., 2014 for an incomplete list of references).

Biharmonic eigenvalue problems are numerically solved by conforming, nonconforming and
mixed/hybrid finite element methods. The conforming finite element method requires a C1 space
(Ciarlet, 1978; Brenner & Scott, 2008) so that its basis functions contain at least quintic polynomi-
als in two dimensions, which is rather expensive. Alternatively, Rannacher (1979) considered eigenvalue
approximation for fourth-order self-adjoint eigenvalue problems by nonconforming finite elements. The
disadvantage of the nonconforming method lies in the delicate design of the finite element space in
order to guarantee convergence. Canuto (1978, 1981) and Ishihara (1978) considered the mixed/hybrid
element approximation for the biharmonic eigenvalue problem and derived error estimates for the eigen-
pairs. Further, Mercier et al. (1981) developed an abstract analysis for the approximate eigenpairs using
mixed/hybrid finite element methods based on the general theory of compact operators (see also Chatelin,
1983 and Babuska & Osborn, 1991). Then the techniques accelerating for the convergence of mixed
finite element approximations for the eigenpairs of the biharmonic operator and 2m-order self-adjoint
eigenvalue problems have been proposed in Andreeva et al. (2005) and Racheva & Andreev (2002),
respectively. An extension to the superconvergence of the Hermite bicubic element for the biharmonic
eigenvalue problem has been carried out in Wu (2001).

Transmission eigenvalue problems are often solved by reformulating them as fourth-order eigen-
value problems. The transmission eigenvalues usually provide qualitative information about the material
properties of the scattering object from far-field data (Cakoni et al., 2007, 2009). Fast and accurate com-
putation of transmission eigenvalues is desired in practice (Colton et al., 2010; An & Shen, 2013; Ji &
Sun, 2013; Cakoni et al., 2014; Ji et al., 2014; Yang et al., 2015). It is worth mentioning that, in An
& Shen (2013), the authors proposed an efficient spectral element method for computing transmission
eigenvalues in radially stratified media. However, for the transmission problem in an arbitrary domain,
fast finite element methods are still under developed. The complication of conforming FEMs and the
inconsistency of mixed FEMs limit the applications of both methods.

In this article, we introduce a new idea developed in a recent article (Guo et al., 2015) to solve
these two eigenvalue problems. The variational equation of a fourth-order problem involves the second
derivative of the discrete solution, which is impossible to obtain from a direct calculation of a C0 linear
element whose gradient is piecewise constant (w.r.t. the underlying mesh) and discontinuous across each
element. To overcome this difficulty, we use the gradient recovery operator Gh to ‘lift’ discontinuous
piecewise constant Dvh into a continuous piecewise linear function Ghvh (see e.g., Zienkiewicz & Zhu,
1992; Zhang & Naga, 2005; Zhang, 2007 for the details of different recovery operators). In other words,
we apply the special difference operator DGh to the standard Ritz–Galerkin method to construct our finite
element schemes.

Our method is straightforward: it does not require the complicated construction of C1 finite element
basis functions for conforming/nonconforming method nor complicated penalty terms for the discontin-
uous Galerkin method. On the other hand, the fact that the recovery operator Gh can be defined on a
general unstructured grid implies that the method is valid for problems on arbitrary domains and meshes.
Moreover, our method has only function value unknowns at nodal points instead of both function value
and derivative unknowns, so its computational complexity is much lower than existing conforming and
nonconforming methods in the literature.

It is worth mentioning that gradient recovery operators were used to discretize and solve biharmonic
equations by Lamichhane (2011, 2014). However, to guarantee the stability and/or optimal convergence
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2122 H. CHEN ET AL.

orders of their corresponding schemes, some additional conditions were enforced on gradient recovery
operators. Since popular gradient recovery operators such as superconvergent patch recovery (SPR) and
polynomial preserving recovery (PPR) do not satisfy these additional conditions, the application of their
method is very limited, and this might be one reason why no numerical example is provided in Lamichhane
(2011, 2014). In our article, we use popular gradient recovery operators to discretize high-order partial
differential equations. This makes our scheme more practical.

Although the construction of our algorithm is simple, the numerical eigenvalues astonishingly con-
verge to the exact ones with optimal rate. This fact has been observed in our numerical experiments for
both biharmonic and transmission eigenvalue problems. In addition, a theoretical proof of this optimal
convergence has been provided for biharmonic eigenvalue problems.

The remaining parts of this article are organized as follows. Section 2 introduces a gradient recovery
operator and is devoted to the discretization of the biharmonic eigenvalue problem. We present a recovery-
based linear finite element method and derive error estimates for the eigenmodes in various norms.
Section 3 applies the new scheme to a transmission eigenvalue problem. Some numerical experiments
are presented in Section 4. Finally, we make some concluding remarks in Section 5.

Throughout the article, the letter C denotes a generic positive constant, which may be different at
different occurrences. For convenience, the symbol � will be used: x � y means x ≤ Cy for some
constants C independent of the mesh size. Then x ∼ y means both x � y and y � x hold.

2. Biharmonic Eigenvalue problem

In this section, we consider the following biharmonic eigenvalue value problem

Δ2u = λu in Ω , (2.1)

u = 0 on ∂Ω , (2.2)

∂nu = 0 on ∂Ω , (2.3)

where Ω is bounded Lipschitz continuous domain in R2 and n is the unit outward normal vector on the
boundary ∂Ω . The corresponding weak form is Find (λ, u) ∈ R × V such that ‖u‖0 = 1 and

a(u, v) :=
∫
Ω

D2u : D2v = λ(u, v) ∀v ∈ V , (2.4)

where the space

V := H2
0 (Ω) = {v ∈ H2(Ω) | v = ∂nv = 0, on ∂Ω},

and the Frobenius product ‘:’ for two matrixes Bk = (bk
ij), k = 1, 2 is defined as

B1 : B2 =
2∑

i,j=1

b1
ijb

2
ij.

If the boundary condition (2.3) is replaced by ∂2
nnu = 0, the weak form becomes: Find (λ, u) ∈ R ×(

H2(Ω) ∩ H1
0 (Ω)

)
such that ‖u‖0 = 1 and

a(u, v) = λ(u, v) ∀v ∈ H2(Ω) ∩ H1
0 (Ω). (2.5)
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Let Th be a triangulation of the domain Ω with simplicial grids having the mesh-size h. We denote
the set of vertices and edges of Th by Nh and Eh, respectively. Let Vh be the standard P1 finite element
space corresponding to Th of Ω . We define

V 0
h = {vh ∈ Vh : vh = 0 on ∂Ω}

and

V 00
h = {vh ∈ V 0

h : (Ghvh) · n = 0 on ∂Ω},

where Gh : Vh−→Vh × Vh is a weighted averaging, SPR or PPR gradient recovery operator (Zienkiewicz
& Zhu, 1992; Naga & Zhang, 2005). In Xu & Zhang (2004) and Zhang & Naga (2005), the following
properties of the gradient recovery operators Gh have been proved

‖Ghvh‖0 � |vh|1 ∀vh ∈ Vh, (2.6)

‖∇u − GhuI‖0 � h2|u|3,∞ ∀u ∈ W 3,∞(Ω). (2.7)

When the mesh is uniform, the following discrete Poincaré inequality is established in Guo et al. (2015)

‖vh‖i � ‖Ghvh‖i ∀vh ∈ V 0
h , i = 0, 1. (2.8)

Remark 2.1 Weighted averaging, SPR or PPR becomes the same gradient recovery operator on uniform
meshes. Equation (2.7) holds when the mesh form an O(h1+α) parallelogram for weighted averaging and
SPR gradient operator. Equation (2.7) is always true for PPR gradient recovery operator due to polynomial
preserving property.

Remark 2.2 For a general function vh ∈ Vh, Ghvh = 0 does not imply that vh = 0. However, for functions
in V 0

h , the discrete Poincaré inequality ‖vh‖0 � ‖Ghvh‖0 implies the coercivity of Gh.

The discrete eigenvalue problem for (2.4) seeks eigenpairs (λh, uh) ∈ R × V 00
h with ‖uh‖0 = 1

such that

ah(uh, vh) = λh(uh, vh) ∀vh ∈ V 00
h , (2.9)

where the discrete bilinear form

ah(uh, vh) :=
∫
Ω

DGhuh : DGhvh.

Similarly, the discrete eigenvalue problem for (2.5) seeks eigenpairs (λh, uh) ∈ R × V 0
h with ‖uh‖0 = 1

such that

ah(uh, v) = λh(uh, v) ∀v ∈ V 0
h . (2.10)

In the rest of the article, we will only analyse the problem (2.4) and its discretization (2.9), since
similar results can be obtained for (2.5) and its discretization counterpart (2.10) by the same reasoning.
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It is known from the spectral theory (Chatelin, 1983) that the inverse of a compact self-adjoint operator
has countably many eigenvalues, which are real and positive with +∞ as its unique accumulation point.
Therefore, we can suppose that the eigenvalues of (2.4) are enumerated as

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

and denote by (u1, u2, u3, . . . ) some L2-orthonormal system of corresponding eigenfunctions. For any
j ∈ N, the eigenspace corresponding to λj is defined as

Vλi := {u ∈ H2
0 (Ω) | (λi, u) satisfies (2.4)} = span{uk | k ∈ N and λk = λi}.

Apparently, the space Vλi has a finite dimension. On the other hand, the fact that ‖v‖0 � |Ghv|1, ∀v ∈ V 0
h

(see Guo et al., 2015) implies that the discrete eigenvalues for (2.9) can be enumerated as

0 < λh,1 ≤ λh,2 ≤ λh,3 ≤ . . .

with corresponding L2-orthonormal eigenfunctions (uh,1, uh,2, uh,3, . . . ). The discrete eigenspace corres-
ponding to λh,i defined as

Vλh,i := {u ∈ V 00
h | (λh,i, uh) satisfies (2.9)} = span{uh,k | k ∈ N and λh,k = λh,i}

is also of finite dimension.
Given f ∈ V , let u ∈ V denote the unique solution to the linear problem

a(u, v) = ( f , v) ∀v ∈ V . (2.11)

This defines a mapping T : V → V , f �→ u = Tf , which is a self-adjoint operator since there holds the
following equality: for any u, v ∈ L2,

(Tu, v) = (v, Tu) = a(Tv, Tu) = a(Tu, Tv) = (u, Tv).

With this operator, (2.4) has an equivalent formulation

Tu = λ−1u = μu,

where μ := λ−1 and Vμ := Vλ.
Similarly, define the discrete operator Th : L2 → V 00

h ⊂ H1 by letting

ah(Thf , v) = ( f , v) ∀v ∈ V 00
h . (2.12)

The discrete eigenvalue problem (2.9) has an equivalent formulation

Thuh = λ−1
h uh = μhuh,

where μh := λ−1
h and Vμh := Vλh . The mapping Th is also self-adjoint, since we also have that: for any

u, v ∈ L2

(Thu, v) = (v, Thu) = ah(Thv, Thu) = ah(Thu, Thv) = (u, Thv).
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The following error estimates for the discretization of source problem has been shown in Guo et al.
(2015):

Lemma 2.3 For any given f ∈ L2(Ω), let u = Tf and uh = Thf be the solution of (2.11) and (2.12),
respectively. If u ∈ H5(Ω) then

‖u − uh‖0 � h2‖u‖5, ‖u − uh‖1 � h‖u‖5,

‖Du − Ghuh‖0 � h2‖u‖5, ‖Du − Ghuh‖1 � h‖u‖5.
(2.10)

Remark 2.4 The following weak estimate

∣∣∣∣
∫
Ω

∇v · (Ghvh − ∇vh)

∣∣∣∣ � h‖v‖2‖Ghvh‖1 (2.13)

plays an important role to show the consistency of the scheme. With the consistency and coercivity
mentioned in Remark 2.1, we can obtain the above convergence results (see Guo et al., 2015 for details).
Note that for a general gradient operator Gh, a direct estimate for ‖Ghvh − ∇vh‖0 seems to be a very
difficult task.

From the first estimate of (2.13), we obtain that

‖u − uh‖0 � h2‖f ‖1.

On the other hand, it is easy to deduce from (2.11) that ‖u‖0 � ‖f ‖−1. Moreover, the facts that ‖vh‖0

� ‖DGhvh‖1 and uh is the solution (2.12) imply ‖uh‖0 � ‖f ‖−1. That is,

‖u − uh‖0 � ‖f ‖−1.

Then by the interpolating theory (Brenner & Scott, 2008), there exists some s > 0 such that

‖Tf − Thf ‖0 = ‖u − uh‖0 � hs‖f ‖0.

It immediately follows that

‖T − Th‖0−→0 as h → 0. (2.11)

Consequently (see Yang, 2012, Theorem 1.4.5),

μh,i → μi and λh,i → λi.

For simplicity, we drop off now the subscript i from μh,i, λh,i, uh,i and μi, λi, ui. Since the eigenvalue
μ is isolated, there exists a constant d(μ) > 0, such that

min
μj �=μ

|μh − μj| ≥ d(μ)

provided h is sufficiently small. By Yang (2012, Theorem 1.4.6) and (2.11), we have the following result.
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Lemma 2.5 Let (μh, uh) with ‖uh‖0 = 1 be the ith eigenpair of Th and μ the ith eigenvalue of T . Then
μh → μ, and there exists u ∈ Vμ with ‖u‖0 = 1 such that

μ− μh = 1

(u, uh)
(Tuh − Thuh, u), (2.12)

‖uh − u‖0 ≤ ‖Tuh − Thuh‖0

d(μ)

(
1 + ‖Tuh − Thuh‖2

0

d(μ)2

) 1
2

. (2.13)

We are now ready to estimate the error of the discrete eigenpairs.

Theorem 2.6 Let (λh, uh) with ‖uh‖0 = 1 be the ith eigenpair of (2.9) and λ the ith eigenvalue of (2.5).
Then λh → λ as h → 0, and there exists u ∈ Vλ with ‖u‖0 = 1 such that

λh − λ = λλh

(u, uh)
((T − Th)u, u)+ R1, (2.14)

‖uh − u‖0 � ‖(T − Th)u‖0, (2.15)

‖Ghuh − Du‖0 � λ‖D(Tu)− Gh(Thu)‖0 + ‖(T − Th)u‖0, (2.16)

D2u − DGhuh = λ(D2(Tu)− DGh(Thu))+ R2, (2.17)

where |R1| � ‖(T − Th)u‖2
0, ‖R2‖0 � ‖(T − Th)u‖0.

Proof. By (2.13),

‖uh − u‖0 � ‖(T − Th)uh‖0

� ‖(T − Th)u‖0 + ‖T − Th‖0‖uh − u‖0.

Noticing ‖T − Th‖0 → 0 (h → 0), we obtain (2.15).
Next we show (2.14). By the properties of T , Th, we have

(Tuh − Thuh, u) = (Tuh, u)− (λ−1
h uh, u)

= (uh, Tu)− (λ−1
h uh, u)

= (λ−1 − λ−1
h )(uh, u).

It follows that

λh − λ = λλh

(u, uh)
((T − Th)uh, u)

= λλh

(u, uh)

(
((T − Th)u, u)+ ((T − Th)(uh − u), u)

)

= λλh

(u, uh)
((T − Th)u, u)+ R1.
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By the facts that T , Th are both self-adjoint, λh → λ and (2.15), we have

|R1| =
∣∣∣∣ λλh

(u, uh)

(
(T − Th)(uh − u), u

)∣∣∣∣
� |(uh − u, (T − Th)u)|
� ‖uh − u‖0‖((T − Th)u)‖0

� ‖(T − Th)u‖2
0,

which implies that (2.14) holds. Note that in the above estimate, we have used the fact (uh, u) → 1, which
is deduced from (2.15) and ‖u‖0 = 1.

Next we show (2.17). From (2.9) and the definition of Th, it follows that

ah(uh − λThu, uh − λThu) = (λhuh − λu, uh − λThu)

≤ ‖λhuh − λu‖0‖uh − λThu‖0

≤ (‖λhuh − λu‖0 + ‖uh − λThu‖0)
2.

Together with (2.14) and (2.15), we obtain

‖DGh(uh − λThu)‖0 � ‖(T − Th)u‖0. (2.18)

On the other hand, using the fact that u = λTu, we have

D(Du − Ghuh) = −DGh(uh − λThu)+ D2u − λDGhThu

= R2 + λ(D2(Tu)− DGh(Thu)).

By (2.18),

‖R2‖0 � ‖(T − Th)u‖0,

which validates (2.17).
Finally, by (2.18) and the Poincaré inequality,

‖λGhThu − Ghuh‖0 � ‖DGh(uh − λThu)‖0 � ‖(T − Th)u‖0.

Then

‖Du − Ghuh‖0 ≤ ‖D(λTu)− λGhThu‖0 + ‖λGhThu − Ghuh‖0

� λ‖D(Tu)− GhThu‖0 + ‖(T − Th)u‖0,

which is the desired (2.16). �

Theorem 2.6 transfers the error estimates of eigenvalue problem into the ones of the corresponding
source problem. As an immediate consequence of this theorem and Lemma 2.1, we have the following
results.
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Theorem 2.7 Let (λh, uh) with ‖uh‖0 = 1 be the ith eigenpair of (2.9) and λ the ith eigenvalue of (2.5).
Then λh → λ as h → 0, and there exists u ∈ Vλ with ‖u‖0 = 1 such that

|λ− λh| � h2‖u‖5,

‖uh − u‖0 � h2‖u‖5,

‖Ghuh − Du‖0 � h2‖u‖5,

‖D2u − DGhuh‖0 � h‖u‖5.

3. Transmission eigenvalue problem

This section is dedicated to an application of gradient recovery operator on the numerical solution of
transmission eigenvalue problem.

3.1 Variational form

Let Ω ⊂ R2 be a bounded Lipschitz domain and n a real value function in L∞(Ω) with n > 1. We
seek a complex quantity k ∈ C and a nontrivial pair of functions (v, w) ∈ L2(Ω) × L2(Ω) such that
v − w ∈ H2(Ω) and

Δw + k2n(x)w = 0 in Ω ,
Δv + k2v = 0 in Ω ,
w = v on ∂Ω ,
∂w
∂ν

= ∂v
∂ν

on ∂Ω ,

(3.1)

where ν is the unit out normal vector of boundary ∂Ω . As in Cakoni et al. (2014), we first rewrite (3.1)
as a fourth-order eigenvalue problem. Let u = w − v ∈ H2

0 (Ω), (3.1) implies that

(Δ+ k2n)
1

n − 1
(Δ+ k2)u = 0 in Ω . (3.2)

The weak form is to find an eigenpair (k, u) ∈ C × H2
0 (Ω) with u �= 0 such that

∫
Ω

1

n − 1
(Δu + k2u)(Δv̄ + k2nv̄) dx = 0 ∀v ∈ H2

0 (Ω). (3.3)

Expanding (3.3) gives

(Δu,Δv)n−1 + k2(u,Δv)n−1 + k2(Δu, nv)n−1 + k4(nu, v)n−1 = 0, (3.4)

where the weighted inner product (·, ·)n−1 is defined as

(u, v)n−1 =
∫
Ω

1

n − 1
uv̄ dx.
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The Poincaré inequality implies that k = 0 is not an eigenvalue since otherwise we have Δu = 0, which
will lead to u = 0. Note that (3.4) is a quadratic eigenvalue problem, which is more difficult than a linear
one. Letting φ ∈ H1

0 (Ω) be the weak solution of the following elliptic equation

Δφ = k2 n

n − 1
u in Ω , (3.5)

the quadratic eigenvalue problem (3.4) can be reformulated as: Find the eigenpair (u,φ, k) ∈ H ×C such
that (see e.g., Cakoni et al., 2014)

(Δu,Δv)n−1 = −k2((u,Δv)n−1 + (Δu, nv)n−1 − (∇φ, ∇v)) ∀v ∈ H2
0 (Ω),

(∇φ, ∇ψ) = −k2(nu,ψ)n−1 ∀ψ ∈ H1
0 (Ω), (3.6)

where H = H2
0 (Ω)× H1

0 (Ω). Note that (3.6) is a linear eigenvalue problem.

Remark 3.1 If index of refraction n(x) is smooth, the quadratic eigenvalue problem (3.4) is also equivalent
to the following fourth-order eigenvalue problem: find (u, v) ∈ H × C such that

(Δu,Δv)n−1 = k2

[(
∇

(
nu

n − 1

)
, ∇v

)
n−1

+
(

∇u, ∇
(

nv

n − 1

))
+ (∇φ, ∇v)

]
,

(∇φ, ∇ψ) = −k2(nu,ψ)n−1, (3.7)

for any v ∈ H2
0 (Ω) and ψ ∈ H1

0 (Ω). Comparing the two weak forms (3.6) and (3.7), the formulation
(3.6) is more generally since it works for nonsmooth index of refraction function n.

For s = 0, 1, 2, we define the space Hs = Hs(Ω)×Hs−1(Ω)with the norm ‖(u, w)‖s = ‖u‖s+‖w‖s−1.
The Hilbert space H = H2

0 (Ω)× H1
0 (Ω) is a subspace of H2 with the norm ‖ · ‖ = ‖ · ‖2.

Define the bilinear form

A((u,φ), (v,ψ)) := (Δu,Δv)n−1 + (∇φ, ∇ψ) (3.8)

on H × H, and the bilinear form

B((u,φ), (v,ψ)) = −((u,Δv)n−1 + (Δu, nv)n−1 − (∇φ, ∇v))− (nu,ψ)n−1, (3.9)

on H × H. The transmission eigenvalue problem (3.6) is to seek (u,φ, k) ∈ H × C such that

A((u,φ), (v,ψ)) = k2B((u,φ), (v,ψ)) ∀(v,ψ) ∈ H2
0 (Ω)× H1

0 (Ω). (3.10)

One can easily verify that for any given ( f , g) ∈ H2, B(( f , g), (v, z)) is a continuous linear form
on H2:

|B(( f , g), (v, z))| � ‖( f , g)‖1‖(v, z)‖2, ∀(v, z) ∈ H2.

Defining a linear operator T : H2
0 (Ω)× H1

0 (Ω) → H2
0 (Ω)× H1

0 (Ω) as the solution operator of the
following variational problems

A(T(u,φ), (v,ψ)) = B((u,φ), (v,ψ)) ∀(v,ψ) ∈ H2
0 (Ω)× H1

0 (Ω), (3.11)
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the variational form (3.10) can be rewritten as: find (u,φ) ∈ H2
0 (Ω)× H1

0 (Ω) and λ ∈ C

T(u,φ) = λ(u,φ), (3.12)

where λ = 1
k2 . As in Yang et al. (2015), it is easy to show that T is compact from H2 to H2 and from H1

to H1 when n ∈ W 1,∞(Ω) and T is compact from H0 to H0 when n ∈ W 2,∞(Ω).

3.2 Recovery-based linear finite elements discretization

We define the discrete counter part of bilinear forms A and B, for all uh, vh ∈ V 00
h and φh,ψh ∈ V 0

h ,
respectively, by

Ah((uh,φh), (vh,ψh)) = (divGhuh, divGhvh)n−1 + (∇φh, ∇ψh) (3.13)

and

Bh((uh,φh), (vh,ψh)) = −
( nuh

n − 1
, divGhvh

)
−

(
divGhuh,

nvh

n − 1

)
+ (∇φh, ∇vh)−

( nuh

n − 1
,ψh

)
, (3.14)

where Gh is the gradient recovery operator mentioned in the previous section. The C0 linear finite element
approximation of (3.10) is to find (uh,φh, kh) ∈ V 00

h × V 0
h × C such that

Ah((uh,φh), (vh,ψh)) = k2
hBh((uh,φh), (vh,ψh)) ∀(vh,φh) ∈ V 00

h × V 0
h . (3.15)

Let the mapping Th : H1
0 (Ω)× H1

0 (Ω) → V 00
h × V 0

h satisfy the discrete variational problem

Ah(Th(u,φ), (vh,ψh)) = Bh((uI ,φ), (vh,ψh)) ∀(vh,ψh) ∈ V 00
h × V 0

h , (3.16)

where uI is the interpolation of u in Vh, the discrete problem (3.15) can be rewritten in the operator form:
Find (uh,φh, λh) ∈ V 00

h × V 0
h × C such that

Th(uh,φh) = λh(uh,φh), (3.17)

where λh = 1
k2
h

.

Remark 3.2 Numerical examples in the next section indicate that the approximated transmission eigen-
value converges to the exact one at rate of O(h2). In addition, the numerical scheme produces a lower
bound for the exact transmission eigenvalue. Note that all existing methods in the literature provide upper
bounds.

Remark 3.3 Since Vh � H2
0 (Ω), the scheme (3.15) is a nonconforming method.

Remark 3.4 There are several alternative discrete schemes of the bilinear form B(·, ·). For example, one
may choose the form as

B1
h((uh,φh), (vh,ψh)) =

(
∇

( nuh

n − 1

)
, Ghvh

)
+

(
Ghuh, ∇

( nvh

n − 1

))
+ (∇φh, ∇vh)−

( nuh

n − 1
,ψh

)
. (3.18)
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Compared to this form, the form (3.14) has an advantage that it can be defined for nonsmooth index of
refraction n.

One may also choose

B2
h((uh,φh), (vh,ψh)) =

(
∇

( nuh

n − 1

)
, ∇vh

)
+

(
∇uh, ∇

( nvh

n − 1

))
+ (∇φh, ∇vh)−

( nuh

n − 1
,ψh

)
. (3.19)

Here, we would like to point out that several of our numerical experiments show that this scheme does
not have an optimal convergence order, even if n is sufficiently smooth, e.g., n ∈ W 2,∞.

4. Numerical experiments

In this section, we provide several numerical examples to demonstrate the effectiveness and convergence
rates of our methods. The first two examples are designed for biharmonic eigenvalue problems and the
other two are for transmission eigenvalue problems.

In the following tables, all convergence rates are listed with respect to the degree of freedom (Dof).
Noticing Dof ≈ h−2 for a two-dimensional grid, the corresponding convergent rates with respect to the
mesh size h are double of what we present in the tables.

Example 1: Simply supported biharmonic eigenvalue problem.
Consider the following biharmonic eigenvalue problem with simply supported plate boundary

condition
⎧⎨
⎩
Δ2u = λu in Ω ,
u = 0 on ∂Ω ,
∂nnu = 0 on ∂Ω ,

(4.1)

where Ω = (0, 1) × (0, 1). The eigenvalues of (4.1) are λk,
 = (k2 + 
2)2π 4 and the corresponding
eigenfunctions are uk,
 = 2 sin(kπx) sin(
πy)with k, 
 = 1, 2, . . .. In this example, we focus on numerical
computation of the first three eigenvalues: λ1 = 4π 4 and λ2 = λ3 = 25π 4. Here we use the following
notation:

e := ‖ui − ui,h‖0,Ω

and

D2e := |Dui − Ghui,h|1,Ω .

Table 1 lists the numerical errors of the three smallest eigenvalues and their corresponding eigen-
value functions on regular pattern uniform triangular meshes. We see that the numerical eigenvalue λi,h

approximates the exact eigenvalue λi at rate of O(h2). In addition, O(h2) convergence of eigenfunction
approximation in the L2 norm and O(h) convergence in the discrete H2 norm can be observed. All those
observations consist with our theoretical results. An interesting phenomenon is that λi,h approximates the
exact eigenvalue from below; see Column 4 in Table 1. We want to remark that lower bound of eigenvalue
is very important in practice, and many efforts have been made to obtain eigenvalue approximation from
below. The readers are referred to Armentano & Durán (2004), Guo et al. (2016), Yang et al. (2010) and
Zhang et al. (2007) for other ways to approximate eigenvalue from below. Our numerical experiments
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Table 1 Numerical results of (4.1) on uniform mesh

i Dof λi λi,h − λi Order e Order D2e Order

1 289 382.503 −7.13e+00 — 4.31e−03 — 1.87e+00 —
1 1089 387.810 −1.83e+00 1.03 9.83e−04 1.11 9.33e−01 0.52
1 4225 389.175 −4.61e−01 1.02 2.38e−04 1.05 4.63e−01 0.52
1 16641 389.521 −1.16e−01 1.01 5.87e−05 1.02 2.30e−01 0.51
1 66049 389.607 −2.90e−02 1.00 1.46e−05 1.01 1.15e−01 0.51
1 263169 389.629 −7.22e−03 1.00 3.66e−06 1.00 5.71e−02 0.50
2 289 2328.173 −1.07e+02 — 1.43e−02 — 7.12e+00 —
2 1089 2406.649 −2.86e+01 1.00 2.69e−03 1.26 3.49e+00 0.54
2 4225 2427.890 −7.34e+00 1.00 6.08e−04 1.10 1.72e+00 0.52
2 16641 2433.371 −1.86e+00 1.00 1.48e−04 1.03 8.51e−01 0.51
2 66049 2434.761 −4.67e−01 1.00 3.67e−05 1.01 4.24e−01 0.51
2 263169 2435.110 −1.17e−01 1.00 9.15e−06 1.00 2.11e−01 0.50
3 289 2347.191 −8.80e+01 — 1.13e−02 — 6.44e+00 —
3 1089 2411.798 −2.34e+01 1.00 2.19e−03 1.23 3.17e+00 0.53
3 4225 2429.200 −6.03e+00 1.00 5.02e−04 1.09 1.56e+00 0.52
3 16641 2433.700 −1.53e+00 1.00 1.23e−04 1.03 7.74e−01 0.51
3 66049 2434.843 −3.84e−01 1.00 3.05e−05 1.01 3.85e−01 0.51
3 263169 2435.131 −9.63e−02 1.00 7.63e−06 1.00 1.92e−01 0.50

are also performed on chevron, Criss-cross and Unionjack pattern uniform meshes. The numerical results
are similar, and hence they are not reported here.

We also tested our schemes on unstructured meshes. The first level coarse mesh is generated by
EasyMesh (Niceno, 1997) and the five following levels of meshes are obtained by regular refinement.
Table 2 presents the eigenpair approximation errors. As predicted in Theorem 2.7, we observe |λi −λi,h|,
e and D2e decay at rate O(h2), O(h2) and O(h), respectively. Furthermore, λi,h is smaller than λi.

Example 2: Clamped plate biharmonic eigenvalue problem.
We consider the biharmonic eigenvalue problem with clamped plate boundary condition

{
Δ2u = λu in Ω ,
u = ∂nu = 0 on ∂Ω ,

(4.2)

where Ω = (0, 1)× (0, 1).
We focus on the numerical computation of the smallest eigenpair, which is unknown a priori. To

compute the eigenvalue approximation error, we use λ1 = 1, 294.93393 as reference eigenvalue value
(Chen & Lin, 2007). Also we use the follow relative errors

ê := ‖ui,2h − ui,h‖0,Ω

and

D2ê := |Gui,2h − Ghui,h|1,Ω ,
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Table 2 Numerical results of (4.1) on Delaunay mesh

i Dof λi λi,h − λi Order e Order D2e Order

1 139 370.309 −1.93e+01 — 8.73e−03 — 2.50e+00 —
1 513 384.857 −4.78e+00 1.07 1.95e−03 1.15 1.29e+00 0.51
1 1969 388.512 −1.12e+00 1.08 4.30e−04 1.12 6.12e−01 0.56
1 7713 389.361 −2.76e−01 1.03 1.02e−04 1.05 3.03e−01 0.52
1 30529 389.568 −6.85e−02 1.01 2.49e−05 1.03 1.51e−01 0.51
1 121473 389.619 −1.71e−02 1.01 6.12e−06 1.01 7.55e−02 0.50
2 139 2207.716 −2.28e+02 — 3.38e-02 — 9.43e+00 —
2 513 2374.042 −6.12e+01 1.01 7.00e−03 1.20 4.67e+00 0.54
2 1969 2420.180 −1.50e+01 1.04 1.23e−03 1.29 2.23e+00 0.55
2 7713 2431.486 −3.74e+00 1.02 2.74e−04 1.10 1.09e+00 0.52
2 30529 2434.293 −9.34e−01 1.01 6.55e−05 1.04 5.41e−01 0.51
2 121473 2434.994 −2.33e−01 1.00 1.60e−05 1.02 2.69e−01 0.51
3 139 2213.645 −2.22e+02 — 2.91e−02 — 9.27e+00 —
3 513 2374.249 −6.10e+01 0.99 6.84e−03 1.11 4.77e+00 0.51
3 1969 2420.601 −1.46e+01 1.06 1.22e−03 1.28 2.25e+00 0.56
3 7713 2431.627 −3.60e+00 1.03 2.73e−04 1.09 1.10e+00 0.52
3 30529 2434.332 −8.95e−01 1.01 6.54e−05 1.04 5.45e−01 0.51
3 121473 2435.004 −2.23e−01 1.01 1.59e−05 1.02 2.71e−01 0.51

Table 3 Numerical Result of Clamped biharmonic eigenvalue problem on uniform
mesh

Dof λ1 λ1,h − λ1 Order ê Order D2ê Order

1089 1226.035 −6.89e+01 — 2.66e−01 — 3.00e+01 —
4225 1265.917 −2.90e+01 0.64 2.24e−02 1.83 7.09e+00 1.06
16641 1287.059 −7.88e+00 0.95 4.68e−03 1.14 2.61e+00 0.73
66049 1292.903 −2.03e+00 0.98 1.36e−03 0.90 1.25e+00 0.53
263169 1294.419 −5.15e−01 0.99 3.59e−04 0.96 6.18e−01 0.51

to access the approximation quality of eigenfunction. Tables 3 and 4 show the results of eigen-
value/eigenfunction approximation on regular pattern uniform and Delaunay meshes, respectively. As
in numerical experiments for biharmonic eigenvalue with simply supported plate, we observe that the
numerical eigenvalue λ1,h approximates the exact one with order O(h2). Also, we observe that ê decays
at rate of O(h2) and D2ê decays at rate of O(h). It indicates that ui,h converges to the exact eigenfunction
at rate of O(h2) in the L2 norm and at rate of O(h) in the recovered H2 norm, which consists with our
theoretical results. Moreover, we observe that the numerical eigenvalues are always smaller than the exact
one.

Example 3: Transmission eigenvalue problem with constant index of refraction.
We consider the transmission eigenvalue problem on the circular disk centered at (0, 0) with radius

1
2 . The index of refraction function n(x) is a constant 16. Table 5 lists the six smallest transmission
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Table 4 Numerical Result of Clamped biharmonic eigenvalue problem on Delaunay
mesh

Dof λ1 λ1,h − λ1 Order ê Order D2ê Order

1969 1231.796 −6.31e+01 — 4.69e−02 — 1.00e+01 —
7713 1278.029 −1.69e+01 0.97 9.27e−03 1.19 3.78e+00 0.72
30529 1290.579 −4.35e+00 0.99 2.60e−03 0.92 1.79e+00 0.54
121473 1293.829 −1.10e+00 0.99 6.95e−04 0.96 8.61e−01 0.53
484609 1294.655 −2.79e−01 1.00 1.80e−04 0.98 4.20e−01 0.52

Table 5 Discrete eigenvalues of transmission eigenvalue problem on circular disk

j Dof λ1,hj λ2,hj λ3,hj λ4,hj λ5,hj λ6,hj

1 360 1.980655 2.583499 2.590153 3.174488 3.186215 3.694087
2 1375 1.986065 2.604242 2.604443 3.207476 3.207625 3.730442
3 5373 1.987482 2.610793 2.610838 3.222034 3.222034 3.737946
4 21241 1.987857 2.612387 2.612399 3.225490 3.225490 3.740130
5 84465 1.987956 2.612789 2.612792 3.226353 3.226353 3.740713

eigenvalues computed according to (3.15). Our numerical results match well with previous numerical
results in the literature (Colton et al., 2010; An & Shen, 2013; Ji et al., 2014). Define the relative error as

erri = |λi,hj − λi,hj+1 |
λi,hj+1

,

where λi,hj is the ith smallest transmission eigenvalue on the jth level mesh with i = 1, 2, 3, 4, 5, 6 and
j = 1, 2, 3, 4, 5. As plotted in Fig. 1, the relative errors converge at rate of O(h2). It is worth mentioning that
most numerical methods in the literature produce upper discrete eigenvalues for transmission problems,
while our method generates lower discrete eigenvalues.

Example 4: Transmission eigenvalue problem with variable index of refraction.
We consider a general case that the index of refraction is a general variable function. Specifically, we

take n(x) = 8 + x − y, (x, y) ∈ Ω = (0, 1)2 as in Ji et al. (2014). We list in Table 6 the approximation
results of the five smallest transmission eigenvalues which are computed by our scheme (3.15). We
observe that the discrete eigenvalues increase when the degree of freedom gets bigger. Namely, the
discrete eigenvalues computed by our scheme converges from below to the exact eigenvalues. To illustrate
the convergence rates, we depict in Fig. 2 the relative error in terms of the degree of freedom. As in
Example 3, we use erri, i = 1, . . . , 5 to denote the relative error of the ith eigenvalue. We observe that all
erri, i = 1, . . . , 5 converge with second order, which are consistent with the results in Ji et al. (2014). We
would like to mention that our computational cost is much lower than the corresponding ones in Ji et al.
(2014).
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Fig. 1. Convergence rate of the transmission eigenvalue problem on circular disk.

Table 6 Numerical results for the transmission eigenvalue problem on
unit square

j Dof λ1,hj λ2,hj λ3,hj λ4,hj λ5,hj

1 289 2.798184 3.479101 3.482872 4.040773 4.359484
2 1089 2.814542 3.516790 3.520860 4.080405 4.462083
3 4225 2.820122 3.532973 3.534310 4.107758 4.491470
4 16641 2.821651 3.537235 3.537801 4.115179 4.499126
5 66049 2.822052 3.538328 3.538691 4.117093 4.501074

5. Conclusion

In this article, a straightforward C0 linear finite element method is developed for both biharmonic and
transmission eigenvalue problems. The method circumvents the complicated construction of C1 conform-
ing elements and uses only values at element vertices as degrees of freedom, and hence is much simpler
and more efficient than nonconforming finite elements. Although we observed the optimal convergence
rate for both cases numerically, we provide only theoretical justification for the biharmonic eigenvalue
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Fig. 2. Convergence rates of the transmission eigenvalue problem on the unit square.

problem. An interesting observation from our numerical experiments is that discrete eigenvalues based on
proposed method converge to the exact eigenvalues from below for biharmonic eigenvalue problems as
well as transmission eigenvalue problems. A theoretical proof of this phenomenon is one of our ongoing
research projects.
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