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a b s t r a c t

In this paper, we propose two systematic strategies to recover the gradient on the bound-
ary of a domain. The recovered gradient has comparable superconvergent property on the
boundary as that in the interior of the domain. This superconvergence property has been
validated by several numerical experiments.
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1. Introduction

Gradient recovery [1–10] is an effective and widely used post-processing technique in scientific and engineering
computation. The main purpose of these techniques is to reconstruct a better numerical gradient from a finite element
solution. It can be used for mesh smoothing, a posteriori error estimate [3,7,8,10,5], and adaptive finite element method
even with anisotropic meshes [11–14]. More recently, the gradient recovery technique was applied to improve eigenvalue
approximation as well [15–18].

The Superconvergent Patch Recovery (SPR) and Polynomial Preserving Recovery (PPR) are two popular methods which
have been adopted by commercial software such as ANSYS, Abaqus, COMSOL Multiphysics, Diffpack, LS-DYNA, etc. The SPR
is proposed by Zienkiewicz–Zhu in 1992 [9]. It recovers the gradient at a vertex by local least-squares fitting to the finite
element gradient in an associated patch. The PPR is proposed by Zhang and Naga in 2005 [6,3]. It recovers the gradient at
a vertex by local least-squares fitting to the finite element solution in an associated patch and then taking gradient of the
least-squares fitted polynomial.

The PPR often forms a higher-order approximation of the gradient on a patch ofmesh elements around eachmesh vertex.
For regular meshes, the convergence rate of the recovered gradient is O(hp+1)—the same as for the solution itself [19, p. 471]
[20, p. 1061]. However, the accuracy of PPR near boundaries is not as good as that in the interior of the domain. It might even
be worse than without recovery [19, p. 471] [20, p. 1061]. Some special treatments are needed to improve the accuracy of
PPR on the boundary.
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In this paper, we present two boundary recovery strategies. Our first strategy to recover the gradient at a boundary
vertex is as follows. First, by using the standard PPR local least-squares fitting procedure for interior vertex, we construct a
polynomial for each selected interior vertices close to the target boundary vertex. Then we take the average of all quantities
evaluating the gradient of the obtained polynomials at the target boundary vertex as the recovered gradient. The second
recovery strategy is as below: We construct a relatively large element patch by merging all the element patches of some
selected interior vertices near the target point. Then we select all mesh nodes in the above patch as sampling points to fit
a polynomial in least-squares sense and define the recovered gradient by the gradient of the constructed polynomial at the
target point.

The basic idea behind our two strategies is: the classic PPR method cannot achieve a good approximation on boundary
comparable to that in the interior of the domain since the classic selected boundary patch does not contain sufficient
information. Therefore, we should replace the boundary patch by the interior patches which has more information than
the boundary patch and which has a certain symmetric property. Both the above proposed methods use more information
than the classic PPR methods.

Our two methods are numerically tested and compared with standard implementation in COMSOL Multiphysics. The
numerical results in L2 norm validate that both our methods lead to superconvergent recovered gradient up to boundary.
The numerical errors in L∞ norm show improved accuracy over the classical PPR method near boundary.

The rest of the paper is organized as follows. In Section 2, we present a terse introduction to polynomial preserving
recovery. In Section 3, we introduce two gradient recovery strategies of PPR on boundary and give some illustrative
examples. Section 4 contains some numerical examples to verify robustness of our recovery strategies. Finally, conclusions
are drawn in Section 5.

2. Preliminaries

In this section, we will give a brief introduction to the polynomial preserving recovery method. For the sake of clarity,
only C0 finite element methods will be considered.

Let Ω be a bounded polygonal domain with Lipschitz boundary ∂Ω in R2. Throughout this article, the standard notation
for Sobolev spaces and their associate norms are adopted as in [21,22]. For a subdomain A of Ω , let W k

p (A) denote the
Sobolev space with norm ∥ · ∥W k

p (A) and seminorm | · |W k
p (A). When p = 2, we denote simply Hk(A) = W k

2 (A) and the
subscript p is omitted.

For any 0 < h < 1
2 , let Th be a shape regular triangulation of Ω̄ with mesh size at most h, i.e.

Ω̄ =


K∈Th

K ,

where K is a triangle. For any r ∈ N, define the continuous finite element space Sh of order r as

Sh = {v ∈ C(Ω̄) : v|K ∈ Pr(K), ∀K ∈ Th} ⊂ H1(Ω),

where Pr denote the space of polynomials defined on kwith degree less than or equal to r . Denote the finite element solution
in Sh by uh, and the set of mesh nodes and interior mesh nodes byNh and N̊h, respectively. Given a vertex z ∈ Nh, letL(z, n)
denote the union of mesh elements in the first n layers around z, i.e.,

L(z, n) =


z, if n = 0,

{τ : τ ∈ Th, τ ∩ L(z, 0) ≠ φ}, if n = 1,
{τ : τ ∈ Th, τ ∩ L(z, n − 1) is a (d − 1)-simplex}, if n ≥ 2.

(2.1)

An element patch Kz around an interior vertex z is defined based on L(z, n), which contains nz nodes. For details on
construction of Kz , readers are referred to [6,23]. We select all mesh nodes zj ∈ Nh, j = 1, 2, . . . , nz in this element
patch Kz as sampling points, and fit a polynomial of degree r + 1 in the least squares sense, i.e., we seek for pz ∈ Pr+1(Kz)
such that

nz
j=1

(pz − uh)
2(zj) = min

q∈Pr+1

nz
j=1

(q − uh)
2(zj).

The recovered gradient at z is then defined as

(Ghuh)(z) := ∇pz(z). (2.2)

If r = 1, all mesh nodes are vertices and Ghuh is completely defined. However, Nh may contain edge nodes or interior nodes
for higher order elements. If z is an edge node which lies in an edge between two vertices z1 and z2, we define

(Ghuh)(z) = β∇pz1(z) + (1 − β)∇pz2(z) (2.3)
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where β is determined by the ratio of distances of z to z1 and z2. If z is an interior node which lies in a triangle formed by
three vertices z1, z2, and z3, we define

(Ghuh)(z) =

3
j=1

βj∇pzj(z), (2.4)

where βj is the barycentric coordinate of z. With all nodal values of Ghuh determined, the gradient recovery operator: Gh :

Sh → Sdh is then well defined.
It was proved in [6] that the least squares fitting procedure has a unique solution under certain geometric conditions.

As for linear element, we need at least six nodes to fit a quadratic polynomial and those sampling points should not be on a
conic curve.

In addition, the gradient recovery operator Gh has the following properties [23,6]:

1. Gh is a bounded operator in the sense that there exists a constant C , independent of h, such that

∥Ghv∥L2(Ω) ≤ C |v|H1(Ω), ∀v ∈ Sh.

2. For any nodal point z, if p ∈ Pr+1(Kz),

(Ghp)(z) = ∇p(z).

Furthermore, the following superconvergence results hold [6].

Theorem 2.1. Let Th be an arbitrary mesh. Then, Gh preserves polynomials of degrees up to r + 1 in Ω . Furthermore, if the nodes
involved in PPR at a mesh vertex z ∈ Nh are symmetrically distributed around z, and if r is even, then Gh preserves polynomials
of degree up to r + 2 at z.

Theorem 2.2. Let z be a mesh node and Kz be the corresponding patch. If u ∈ W r+2
∞

(Kz), then

∥∇u − Ghu∥L∞(Kz ) ≤ Chr+1
|u|W r+2

∞ (ωz )
,

where ωz is a larger element patch which contains Kz .

3. PPR on boundary

If not handled properly, gradient recovery techniques may deteriorate near boundary [6,23]. High performance near/on
boundary is one of the key characteristics of a good gradient recovery technique. In this section, we present two systematic
strategies to construct robust PPR operator up to boundary. Both strategies have comparable accuracy near boundary ∂Ω as
in the interior of Ω . Only linear element is considered here. Extension to higher-order elements can be done by combining
ideas in this work with PPR for higher-order cases. In the sequel, we denote z as a mesh vertex on boundary, i.e., z ∈

Nh ∩ ∂Ω .

3.1. Strategy 1

Simple averaging of the recovered gradient from PPR under uniform triangular mesh of the regular pattern produces
ultra-convergence (two orders higher) gradient recovery for quadratic element at element edge centers [6]. In light of this
fact, our first strategy is to treat z ∈ Nh ∩ ∂Ω similarly as an edge center in quadratic element.

For any boundary vertex z, define

Kz = L(z, n0), (3.1)

where n0 is the smallest integer such that L(z, n0) contains at least one interior vertex.
Let z0, z1, . . . , znz be all the interior vertices in Kz . Then our recovered gradient at z is defined as

(Ghuh)(z) =
1

nz + 1

nz
j=0

∇pzj(z), (3.2)

where pzj is the polynomial that fits uh at the interior vertex zj in Kzj , a well defined element patch according to [6].
To describe how to construct Kz , consider a typical Delaunay unstructured mesh on rectangle [0, 2] × [0, 1] which is

obtained using Triangle [24], see Fig. 3.1. Boundary vertices can be grouped into those connecting with one interior vertex,
two interior vertices, three interior vertices, and so on. It is worth tomention that the first group usually contains only corner
vertices. Fig. 3.1 depicts three types of boundary vertices and their corresponding patches.

(1) The left lower corner z is contained in two elements that share the same interior vertex z0. According to definition, Kz
is the element patch which consists of two triangles. We then define (Ghuh)(z) = ∇pz0(z).
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Fig. 3.1. Examples for patch used in Strategy 1.

(2) The bottom z is contained in three elements that have two interior vertices z0 and z1. According to definition Kz is the
element patch which consists of three triangles. We then define (Ghuh)(z) =

1
2 (∇pz0(z) + ∇pz1(z)).

(3) The upper z is contained in four elements that have three interior vertices z0, z1, and z2. According to definition, Kz
is the element patch which consists of four triangles. The recovered gradient at z is then defined as (Ghuh)(z) =
1
3 (∇pz0(z) + ∇pz1(z) + ∇pz2(z)).

3.2. Strategy 2

Here we treat z just like an interior vertex. However, the definition of Kz is more delicate and deserves special
consideration. Kz is constructed in two steps. In the first step, we define a temporary patch K̃z as Kz in (3.1). After
constructing the temporary patch K̃z , we define

Kz =

 
z̃∈K̃z∩N̊h

Kz̃

   
z̃∈K̃z∩Nh∩∂Ω

L(z̃, 1)

 , (3.3)

where Kz̃ is defined in Ref. [6] for z̃ ∈ N̊h. Note that we distinguish between interior vertices and boundary vertices in the
temporary patch K̃z . For a boundary vertex z ′, only triangles having z ′ as a vertex is added to Kz ; but for an interior vertex
z ′′, its own patch Kz′′ is adding to Kz . Let pz ∈ P2(Kz) be the polynomial that best fits uh at the mesh nodes in Kz in discrete
least squares sense, i.e.,

pz = arg min
p∈P2(Kz )


z̃∈Nh∩Kz

|(uh − p)(z̃)|2. (3.4)

Then define the gradient recovery operator at vertex z as

(Ghuh)(z) = ∇pz(z).

To demonstrate the process of constructing Kz in Strategy 2, we use the same Delaunay mesh as in Strategy 1. All
three types of boundary vertices are described in previous subsection. Note that we construct Kz in two steps. Firstly, we
construct K̃z which is shown in Fig. 3.1. ThenKz can be constructedwhich is illustrated in Fig. 3.2. Take the boundary vertex
connecting with 3 interior vertices as an example; see the solid dot point on the top edge in Fig. 3.2. In the first step, we
construct K̃z which consists of four triangles having z as a vertex; see Fig. 3.1 for details. z0, z1 and z2 are all interior vertices
in K̃z . According to (3.3), Kz contains Kz0 , Kz1 and Kz2 . The union of Kz0 , Kz1 and Kz2 is all green triangles near the top
edge in Fig. 3.2. For other boundary vertices in K̃z , we only add triangles containing them into Kz , i.e. the two red triangles
near the top edge. Thus Kz is the element patch consisting of sixteen triangles.

Remark 3.1. Definition of Kz in (3.3) always guarantees the existence and uniqueness of pz . The construction procedure is
systematic and works for arbitrary mesh.

Remark 3.2. Comparing with the boundary recovery methods proposed in [6], the points involved in our procedure are
more symmetric. Hence, this strategy is more stable and robust.

Before ending this subsection, we consider a special situation. For mesh generated by engineering procedure such as
Delaunay mesh generator, any vertex connects with at least one interior vertex, i.e. L(z, 1) ∩ N̊h ≠ ∅; see Figs. 3.1 or 3.2.
But it may occur that L(z, 1) ∩ N̊h = ∅, such as regular and chevron pattern of uniform mesh. Even in this case, both our
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Fig. 3.2. Examples for patch used in Strategy 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3.3. Patch of isolated corned vertex in Strategy 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3.4. Patch of isolated corned vertex in Strategy 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

strategies can be applied without any change. One typical example is shown in Figs. 3.3 or 3.4. For strategy 1, Kz should be
defined as L(z, 2) instead of L(z, 1). In other words, Kz are two green triangles in Fig. 3.3. Then the recovered gradient at
z is defined as (Ghuh)(z) = ∇pz0(z). In order to define Kz in strategy 2, we first construct K̃z containing one interior vertex
z0; see the second sub-figure of Fig. 3.4. According to (3.3), Kz contains Kz0 , i.e. all green triangles in the third sub-figure of
Fig. 3.4. Similarly, all triangles containing z ′ are added to Kz for each boundary vertex z ′ in K̃z .
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3.3. Some illustrations

In this subsection, we use three examples of uniform mesh to demonstrate superconvergence and robustness of our
two gradient recovery strategies on boundary. Let G1

h and G2
h denote boundary recovery operator defined by Strategy 1 and

Strategy 2, respectively.

Example 1. We consider a typical corner vertex in regular pattern, see the solid dot point in Fig. 3.6. In this case, the corner
point belongs to only one element, to which there is no interior vertex attached. According to strategy 1, we fit a quadratic
polynomial pz̃(x, y) at z̃ instead of fitting a quadratic polynomial of pz(x, y) at z, where z̃ is the closest interior vertex to z,
i.e. the solid dot point in Fig. 3.5. Note that Fig. 3.5 shows the patch of the interior vertex z̃ instead of z. Applying the least
squares fitting procedure described in [6], we obtain

pz̃(x, y) = u0 +
1
6h

(2u1 + u2 − u3 − 2u4 − u5 + u6)x +
1
6h

(−u1 + u2 + 2u3 + u4 − u5 − 2u6)y

+
1

6h2
(−6u0 + 3u1 + 3u4)x2 +

1
6h2

(−6u0 + 3u3 + 3u6)y2

+
1

6h2
(6u0 − 3u1 + 3u2 − 3u3 − 3u4 + 3u5 − 3u6)xy.

Differentiating with respect to x and y, we get

∂pz̃
∂x

=
1
6h

(2u1 + u2 − u3 − 2u4 − u5 + u6) +
1

3h2
(−6u0 + 3u1 + 3u4)x

+
1

6h2
(6u0 − 3u1 + 3u2 − 3u3 − 3u4 + 3u5 − 3u6)y;

∂pz̃
∂y

=
1
6h

(−u1 + u2 + 2u3 + u4 − u5 − 2u6) +
1

3h2
(−6u0 + 3u3 + 3u6)y

+
1

6h2
(6u0 − 3u1 + 3u2 − 3u3 − 3u4 + 3u5 − 3u6)x.

Evaluating ∂pz̃
∂x and ∂pz̃

∂y at z yields

G1
hu(z) =

1
6h


−18u0 + 11u1 − 2u2 + 2u3 + 7u4 − 4u5 + 4u6
18u0 − 4u1 + 4u2 − 7u3 − 2u4 + 2u5 − 11u6


, (3.5)

as depicted in Fig. 3.5. Using a computer algebra system such asMathematica, we have the following Taylor expansion

G1
hu(z) =

ux(z) −
h2

6
(2uxxx(z) − 7uxxy(z) + 2uxyy(z)) + O(h3)

uy(z) −
h2

6
(2uxxy(z) − 7uxyy(z) + 2uyyy(z)) + O(h3)

 , (3.6)

which is a second order finite difference scheme approximating ∇u(z).

Now we turn to Strategy 2. It fits a quadratic polynomial

p̂z(ξ , η) = (1, ξ , η, ξ 2, ξη, η2)(â1, . . . , â6)T ,

in the least-squares sense at z, see the solid dot point in Fig. 3.6, with respect to eight nodal values in (ξ , η) coordinates

ξ⃗ = (0, 0, 0, −1, −2, −1, −1, −2)T , η⃗ = (0, 1, 2, 1, 0, 0, 2, 1).

We obtain

pz(x, y) =
1
42

(38u0 + 6u1 − 2u2 − 8u3 − 2u4 + 6u5 + 2u6 + 2u7)
1

42h
(44u0 + 11u1 + 8u2 − 38u3 − 6u4

− 38u5 − 8u6 + 27u7)x
1

42h
(−44u0 + 38u1 + 6u2 + 38u3 − 8u4 − 11u5 − 27u6 + 8u7)y

×
1

42h2
(12u0 + 3u1 + 6u2 − 18u3 + 6u4 − 18u5 − 6u6 + 15u7)x2

1
42h2

(−18u0 + 6u1 + 12u2

+ 6u3 + 12u4 + 6u5 − 12u6 − 12u7)xy
1

42h2
(12u0 − 18u1 + 6u2 − 18u3 + 6u4 + 3u5 + 15u6 − 6u7)y2.
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Fig. 3.5. Denominator 42h.

Fig. 3.6. Denominator 6h.

It indicates that
∂pz
∂x

=
1

42h
(44u0 + 11u1 + 8u2 − 38u3 − 6u4 − 38u5 − 8u6 + 27u7)

1
21h2

(12u0 + 3u1 + 6u2 − 18u3

+ 6u4 − 18u5 − 6u6 + 15u7)x
1

42h2
(−18u0 + 6u1 + 12u2 + 6u3 + 12u4 + 6u5 − 12u6 − 12u7)y;

∂pz
∂y

=
1

42h
(−44u0 + 38u1 + 6u2 + 38u3 − 8u4 − 11u5 − 27u6 + 8u7)

1
42h2

(−18u0 + 6u1 + 12u2 + 6u3

+ 12u4 + 6u5 − 12u6 − 12u7)x
1

21h2
(12u0 − 18u1 + 6u2 − 18u3 + 6u4 + 3u5 + 15u6 − 6u7)y.

Then we obtain the recovered gradient at boundary vertex z (see Fig. 3.6)

G2
hu(z) =

1
42h


44u0 + 11u1 + 8u2 − 38u3 − 6u4 − 38u5 − 8u6 + 27u7

−44u0 + 38u1 + 6u2 + 38u3 − 8u4 − 11u5 − 27u6 + 8u7


. (3.7)
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Fig. 3.7. Denominator 12h.

Also, we have the following Taylor expansion

G2
hu(z) =

ux(z) −
h2

42
(14uxxx(z) − 27uxxy(z) − 8uxyy(z)) + O(h3)

uy(z) +
h2

42
(8uxxy(z) + 27uxyy(z) − 14uyyy(z)) + O(h3)

 ; (3.8)

which is a second-order finite difference scheme as well.

Remark 3.3. The main difference between Strategy 1 and Strategy 2 is that the former fits quadratic polynomials at some
interior vertices near z but the latter fits a quadratic polynomial at the very boundary vertex z.

Example 2. In this example, a typical boundary vertex, as plotted in Fig. 3.7, in chevron pattern mesh is considered. Firstly,
we employ Strategy 1 to this case. Repeating the same procedure as in Example 1, we find that

G1
hu(z) =

1
12h


−6u4 + 6u6

10u0 + 7u1 − 6u2 + 7u3 − 7u4 − 4u5 − 7u6


(3.9)

as shown in Fig. 3.7. It is straightforward to verify that

G1
hu(z) =

 ux(z) −
h2

6
uxxx(z) + O(h3)

uy(z) +
h2

12
(7uxxy(z) − 4uyyy(z)) + O(h3)

 ; (3.10)

which provides a second-order approximation to the exact gradient ∇u.

Then we consider Strategy 2. The patch Kz of z is shown in Fig. 3.8. Following the same procedure as Example 1, we
derive that

G2x
h u(z) =

1
140h

(−28u5 − 14u6 + 14u8 + 28u9) ,

and

G2y
h u(z) =

1
140h

(66u0 + 61u1 − 70u2 + 61u3 + 46u4 − 52u5 − 37u6 − 37u7 − 37u8 − 52u9 + 46u10) ;



H. Guo et al. / Journal of Computational and Applied Mathematics 307 (2016) 119–133 127

Fig. 3.8. Denominator 140h.

Fig. 3.9. Denominator 36h.

where G2x
h and G2y

h represent the first and second rows of G2
h respectively. Note that Strategy 2 uses larger patch, see Fig. 3.8,

but it also produces a second-order finite difference scheme. Actually, we have

G2
hu(z) =

 ux(z) −
17h2

30
uxxx(z) + O(h3)

uy(z) +
h2

12
(21uxxy(z) − 4uyyy(z)) + O(h3)

 . (3.11)

Example 3. This example demonstrates that G1
h and G2

h may involve the same vertices but produce different finite difference
schemes. Let z be a boundary vertex as plotted in Fig. 3.9. As for Strategy 1, we need to fit three least square polynomials at
three interior vertices z0, z1 and z2 connecting z and then take average. Simple calculation verifies that

G1x
h u(z) =

1
36h

(−10u0 − 7u3 + 5u4 + 2u5 − u6 − 13u7 + 10u9 − 2u10 − 5u11 + 7u12 + 13u13 + u14) ,

and

G1y
h u(z) =

1
36h

(−10u0 + 24u1 − 4u3 − 5u4 + 8u5 − 3u6 − 12u7

− 24u8 + 16u9 + 8u10 − 5u11 − 4u12 − 12u13 − 3u14) ,
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Fig. 3.10. Denominator 60h.

where G1x
h and G1y

h are two rows of G1
h . Using standard Taylor expansion, we get

G1
hu(z) =

ux(z) −
h2

6
(uxxx(z) + uxyy(z)) + O(h3)

uy(z) −
h2

3
uyyy(z) + O(h3)

 (3.12)

which clearly indicates that G1
h provides a second order approximation to the exact gradient ∇u(z).

To see how Strategy 2 works, we construct patch Kz , as shown in Fig. 3.10, in two steps. Using all vertices in Kz , fit a
quadratic polynomial at z which yields

G2x
h u(z) =

1
60h

(2u1 + 4u2 − 2u3 − u4 + u6 + 2u7 − 4u8 − 2u9 − 10u10 − 5u11 + 5u13 + 10u14) ,

and

G2y
h u(z) =

1
10h

(4u0 + 4u1 + 4u2 − u3 − u4 − u5 − u6 − u7 + 4u8 + 4u9 − 3u10 − 3u11 − 3u12 − 3u13 − 3u14) ,

where G2x
h and G2y

h have the same meaning as previous example. Taylor expansion results in

G2
hu(z) =

ux(z) +
h2

30
(17uxxx(z) − 5uxyy(z)) + O(h3)

uy(z) +
h2

3
(3uxxy(z) − uyyy(z)) + O(h3)

 . (3.13)

This means that G2
hu(z) is also a second order approximation of the exact gradient ∇u(z).

Remark 3.4. Comparing the computational complexity of Strategy 1 and Strategy 2, we see that Strategy 1 needs to perform
three least square fittings with three 9 × 6 matrices. On the other hand, Strategy 2 does one least square fittings with one
15 × 6 matrix. Thus the computational costs of those two strategies are comparable.

Remark 3.5. Wehave discussed three cases to illustrate proposed two strategies for PPR on boundary. Indeed, both G1
hu and

G2
hu converge to ∇u with second-order rate for all boundary vertices of arbitrary mesh due to the polynomial preserving

property.

4. Numerical experiments

In this section, we provide four numerical examples to verify superconvergence and robustness of our boundary recovery
strategies and also compare the results with COMSOL Multiphysics integrated ‘ppr ’ command. In order to detect boundary
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Table 4.1
Example 1: ∥ · ∥L∞(Nh,1) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

1 241 2.37e−01 – 1.54e−02 – 1.54e−02 – 2.58e−02 –
4841 1.27e−01 0.46 5.48e−03 0.76 5.48e−03 0.76 1.66e−02 0.32

19121 6.55e−02 0.48 2.34e−03 0.62 2.34e−03 0.62 8.02e−03 0.52
76001 3.33e−02 0.49 1.11e−03 0.54 1.11e−03 0.54 3.73e−03 0.56

Table 4.2
Example 1: ∥ · ∥L∞(Nh,2) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

1 241 2.87e−01 – 8.08e−03 – 2.83e−02 – 2.76e−02 –
4841 1.45e−01 0.50 2.36e−03 0.90 7.08e−03 1.02 7.03e−03 1.00

19121 7.25e−02 0.50 9.85e−04 0.64 1.77e−03 1.01 2.23e−03 0.83
76001 3.63e−02 0.50 4.48e−04 0.57 4.48e−04 0.99 8.08e−04 0.74

influence, we split mesh nodes Nh into Nh,1 and Nh,2, where Nh,2 = {z ∈ Nh : dist(z, ∂Ω) ≤ L} denotes all near boundary
nodes and Nh,1 = Nh \ Nh,2 denotes rest interior nodes. Now, we can define

Ωh,1 =


{τ ∈ Th : τ has all of its vertices in Nh,1},

and Ωh,2 = Ω \ Ωh,1, where L is some small quantity to indicate the width of the boundary.
The notations used are the following:
De = ∇(u − uh), where uh is the finite element solution.
De1 = ∇u − G1

huh, where G1
huh is defined by PPR using Strategy 1.

De2 = ∇u − G2
huh, where G2

huh is defined by PPR using Strategy 2.
De3 = ∇u − G3

huh, where G3
huh is defined by PPR using COMSOL Multiphysics integrated ‘ppr ’ command.

All computations are carried out in COMSOLMultiphysics 3.5a on Delaunay triangulation. We perform three levels mesh
refinement by connecting midpoints of each triangles. Here we choose L = 0.1.

Example 1. We first consider a symmetric and infinitely smooth case:

−1u = 2π2 sinπx sinπy, in Ω = [0, 1]2,

with u = 0 on ∂Ω . The exact solution is

u(x, y) = sinπx sinπy.

Themaximum errors of∇u−Ghuh for interior nodes and near boundary nodes are depicted in Tables 4.1 and 4.2, respec-
tively. It can be observed that after performing PPR by any of the three methods, the maximum error decreases significantly
comparing to that without performing gradient recovery processing. In Table 4.1, the L∞ norm of De1 and De2 are identi-
cal since they have the same strategy for the interior nodes and only differ on the boundary. It is worth pointing out that to
achieve the same accuracy, PPR 1 or PPR 2 requires approximately only 1

4 degrees of freedom (DOF) of COMSOLMultiphysics
integrated ‘ppr’ command.

In Table 4.2, we observe clearly superconvergence phenomena. Before recovery, De shows a convergence rate O(N−
1
2 ).

After PPR, our second strategy converges at a rate of O(N−1). Moreover, to achieve the same level of accuracy, PPR 1 requires
approximately 1

4 degrees of freedom of COMSOL Multiphysics.

In addition, we report the L2 error in Tables 4.3 and 4.4. As expected, it is observed that ∇(u − uh) is O(N−
1
2 ). Concern-

ing the convergence of recovered gradients, all three strategies show superconvergence at a rate of O(N−1) in the interior
domain and near the boundary region.

Example 2. Our second example is:

−1u = 1, in Ω = [0, 1]2,

with u = 0 on ∂Ω . The exact solution is given by the infinite series

u(x, y) =
x(1 − x) + y(1 − y)

4
−

2
π3

∞
m=0

1
(2m + 1)3(1 + e−(2m+1)π )

· {[e−(2m+1)πy
+ e−(2m+1)π(1−y)

] sin((2m + 1)πx) + [e−(2m+1)πx
+ e−(2m+1)π(1−x)

] sin((2m + 1)πy)}.

This problem has weak singularities at four corners. In order to observe the asymptotic behavior of numerical
approximations, we start from the secondmesh level in the previous example and perform onemore levelmesh refinement.
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Table 4.3
Example 1: ∥ · ∥L2(Ωh,1) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

1 241 5.70e−02 – 6.92e−03 – 6.92e−03 – 5.57e−03 –
4841 2.86e−02 0.505 1.80e−03 0.98 1.82e−03 0.98 1.63e−03 0.90

19121 1.45e−02 0.497 4.83e−04 0.98 4.83e−04 0.97 4.10e−04 0.99
76001 7.27e−03 0.500 1.26e−04 0.97 1.26e−04 0.97 1.09e−04 0.97

Table 4.4
Example 1: ∥ · ∥L2(Ωh,2) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

1 241 5.17e−02 – 4.98e−03 – 7.07e−03 – 4.04e−03 –
4841 2.58e−02 0.51 1.32e−03 0.97 1.59e−03 1.09 1.01e−03 1.01

19121 1.27e−02 0.51 3.34e−04 1.00 3.69e−04 1.07 2.53e−04 1.01
76001 6.33e−03 0.51 8.48e−05 0.99 8.92e−05 1.03 6.26e−05 1.01

Table 4.5
Example 2: ∥ · ∥L∞(Nh,1) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

4 841 1.16e−02 – 3.34e−04 – 3.33e−04 – 1.27e−03 –
19121 5.99e−03 0.48 1.58e−04 0.55 1.58e−04 0.55 5.41e−04 0.62
76001 2.98e−03 0.51 8.03e−05 0.49 8.03e−05 0.49 2.57e−04 0.54

303041 1.49e−03 0.50 4.04e−05 0.50 4.05e−05 0.50 1.30e−04 0.50

Table 4.6
Example 2: ∥ · ∥L∞(Nh,2) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

4 841 3.07e−02 – 3.42e−03 – 8.51e−03 – 6.99e−03 –
19121 1.77e−02 0.40 1.54e−03 0.58 4.22e−03 0.51 3.45e−03 0.51
76001 9.95e−03 0.42 7.73e−04 0.50 2.18e−03 0.48 1.80e−03 0.47

303041 5.44e−03 0.44 3.41e−04 0.59 1.04e−03 0.53 8.53e−04 0.54

Table 4.7
Example 2: ∥ · ∥L2(Ωh,1) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

4 841 2.24e−03 – 6.21e−05 – 6.21e−05 – 1.26e−04 –
19121 1.14e−03 0.49 1.91e−05 0.86 1.91e−05 0.86 3.33e−05 0.97
76001 5.75e−04 0.50 5.54e−06 0.90 5.54e−06 0.90 8.76e−06 0.97

303041 2.89e−04 0.50 1.56e−06 0.92 1.56e−06 0.92 2.31e−06 0.96

The maximum error of gradient and convergence rates are reported in Tables 4.5 and 4.6. Due to the corner singularities,
the maximum error occurs near the boundary and it is observed in Table 4.6. It can be seen that all strategies have enhanced
the maximum error of gradient as expected. In Table 4.5, we can also observe that De1 and De2 on level 2 are comparable to
De3 on level 4. In Table 4.6, De1 in level 3 is even smaller than De2 and De3 on level 4.

The L2 errors are displayed in Tables 4.7 and 4.8. Inside the domain, Strategy 1 and Strategy 2 superconverge at rate
≈ O(N−0.9) while COMSOL Multiphysics integrated ‘ppr ’ command superconverges at rate ≈ O(N−1). However, we can
observe smaller errors in both of our strategies than in COMSOLMultiphysics. Concerning the performing PPRnear boundary,
all three strategies are comparable and superconvergent.

Example 3. We now consider an anisotropic diffusion problem defined in the unit square Ω = (0, 1)2 as follows
−∇ · (A∇u) = f , in Ω

u = 0, on ∂Ω

where the diffusion matrix is given by

A =


k2 0
0 1


,

and f (x) is chosen such that the exact solution is u = sin(πx) sin(kπy). We test the case k = 10. For anisotropic problems,
it is more suitable to use anisotropic meshes or adaptive meshes. Nevertheless, for the sake of identifying the performance
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Table 4.8
Example 2: ∥ · ∥L2(Ωh,2) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

4 841 3.09e−03 – 1.22e−04 – 3.11e−04 – 2.47e−04 –
19121 1.53e−03 0.51 3.33e−05 0.94 7.94e−05 0.99 6.71e−05 0.95
76001 7.63e−04 0.50 9.04e−06 0.94 2.02e−05 0.99 1.75e−05 0.98

303041 3.80e−04 0.50 2.44e−06 0.95 5.15e−06 0.99 4.59e−06 0.97

Table 4.9
Example 3: ∥ · ∥L∞(Nh,1) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

1 241 1.82e+01 – 1.63e+01 – 1.63e+01 – 1.59e+01 –
4841 1.08e+01 0.38 6.89e+00 0.63 6.89e+00 0.63 6.89e+00 0.62

19121 5.10e+00 0.55 2.35e+00 0.78 2.35e+00 0.78 2.39e+00 0.77
76001 2.44e+00 0.53 8.21e−01 0.76 8.21e−01 0.76 1.05e+00 0.60

Table 4.10
Example 3: ∥ · ∥L∞(Nh,2) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

1 241 1.27e+01 – 4.84e+00 – 4.56e+00 – 5.14e+00 –
4841 6.63e+00 0.48 1.92e+00 0.68 1.92e+00 0.63 1.92e+00 0.72

19121 3.35e+00 0.50 6.02e−01 0.84 6.03e−01 0.84 6.99e−01 0.74
76001 1.68e+00 0.50 2.38e−01 0.67 2.38e−01 0.67 4.55e−01 0.31

Table 4.11
Example 3: ∥ · ∥L2(Ωh,1) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

1 241 5.16e+00 – 5.38e+00 – 5.38e+00 – 4.38e+00 –
4841 2.29e+00 0.60 1.96e+00 0.74 1.96e+00 0.74 1.69e+00 0.70

19121 9.79e−01 0.62 5.81e−01 0.89 5.81e−01 0.89 4.83e−01 0.91
76001 4.50e−01 0.56 1.58e−01 0.94 1.58e−01 0.94 1.40e−01 0.90

Table 4.12
Example 3: ∥ · ∥L2(Ωh,2) on Delaunay triangulation.

DOF De Order De1 Order De2 Order De3 Order

1 241 1.94e+00 – 1.55e+00 – 1.58e+00 – 1.13e+00 –
4841 9.54e−01 0.52 4.94e−01 0.84 5.00e−01 0.84 3.92e−01 0.78

19121 4.63e−01 0.53 1.31e−01 0.97 1.32e−01 0.97 9.96e−02 1.00
76001 2.29e−01 0.51 3.48e−02 0.96 3.49e−02 0.96 2.85e−02 0.91

of PPR, the same Delaunay meshes as in Example 1 would serve the purpose. The results are listed in Tables 4.9 and 4.10.
The numerical results indicate that all three PPR strategies have improved the error on each mesh level.

As for L2 error, it can observed from Tables 4.11 and 4.12 that all three strategies superconverge at rate of O(N−1)
asymptotically.

Example 4. In all previous examples, solutions are analytic. Let us consider the Laplace equation on the L-shaped domain
Ω = (−1, 1) × (−1, 1) \ (0, 1) × (−1, 0). The Dirichlet boundary condition is imposed so that the true solution
u = r2/3 sin(2θ/3) in polar coordinates. In order to remove the pollution caused by the corner singularity, recovery based
adaptive method [3] is employed.We start with an initial mesh shown in Fig. 4.1 and use Dörfler marking strategy [25] with
θ = 0.3.

Due to the corner singularity, the maximum error of ∇u − ∇uh is divergent. Hence we track ∥∇u − ∇uh∥0,Ω and
∥∇u − Ghuh∥0,Ω instead. The numerical results are depicted in Fig. 4.2. For PPR with both Strategy 1 and Strategy 2, a
superconvergence rateO(N−1) is observed,whereN represents the total degrees of freedom.We also test the ‘ppr ’ command
in COMSOL Multiphysics and obtain a superconvergence rate O(N−0.9). In Fig. 4.2, a comparison among different strategies
is made. It is observed that to achieve the same level of accuracy, both Strategy 1 and Strategy 2 require less degrees of
freedom than PPR in COMSOL Multiphysics, and De1 needs almost half less degrees of freedom than De3.



132 H. Guo et al. / Journal of Computational and Applied Mathematics 307 (2016) 119–133

Fig. 4.1. Initial mesh for Example 4.

Fig. 4.2. Comparison of decay of error among different strategies.

5. Conclusion remarks

In this work, we have introduced two strategies to improve performance of PPR gradient recovery on boundary.
Numerical tests provide convincing evidence that our methods inherit the superconvergence property of PPR in the interior
of solution domains. We would expect that future versions of COMSOL Multiphysics may implement our methods and this
in turn would benefit the scientific community.

We would like to emphasize that both strategies are problem independent andmethod independent just as PPR itself. In
order to obtain recovered gradient on the boundary, all we need are numerical data nearby. It does not matter what is the
original problem, even though the quality of the recovery might be influenced by the underlying problem, the method itself
is universal. Although our technique is demonstrated for the finite elementmethod, it can be well applied to other methods,
such as finite difference method and finite volume method, as long as numerical data are provided at some sampling
points.

Finally, boundary recovery technique can be used at an interface, where the solution or its gradient has jumps. In other
words, we treat an interface (if the location is known a priori) as a boundary when performing gradient recovery.
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