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Abstract Polynomial preserving recovery (PPR) was first proposed and analyzed in Zhang
and Naga in SIAM J Sci Comput 26(4):1192–1213, (2005), with intensive following appli-
cations on elliptic problems. In this paper, we generalize the study of PPR to high-frequency
wave propagation. Specifically, we establish the supercloseness between finite element solu-
tion and its interpolation with explicit dependence on the frequency of wavefield, and then
prove the superconvergence of PPR for high-frequency solutions to wave equation based
on the supercloseness. We also present several numerical examples of PPR for both low-
frequency and high-frequency wave propagation in order to confirm the theoretical results
of superconvergence analysis.

Keywords Wave equation · High-frequency · Polynomial preserving · Gradient recovery ·
Superconvergence · Finite element method
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1 Introduction

Superconvergence has been one of the important research topics in the community of finite
elementmethods; see [36] and references therein. In general, it can be classified into two cate-
gories: natural superconvergence (e.g. [8,13,14]) and postprocessing superconvergence (e.g.

This work was partially supported by the NSF Grants DMS-1418936 and DMS-1107291, and Hellman
Family Foundation Faculty Fellowship, UC Santa Barbara. We also acknowledge support from the Center
for Scientific Computing from the CNSI, MRL: an NSF MRSEC (DMR-1121053) and NSF CNS-0960316.

B Hailong Guo
hlguo@math.ucsb.edu

Xu Yang
xuyang@math.ucsb.edu

1 Department of Mathematics, University of California, Santa Barbara, CA 93106, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-016-0312-8&domain=pdf
http://orcid.org/0000-0001-7621-2315


J Sci Comput (2017) 71:594–614 595

[20,25,30,31,39,44–47]). One of the major postprocessing techniques is gradient recov-
ery methods, which are able to provide asymptotically exact a posteriori error estimators
[1,2,7,30,45–47], anisotropical mesh adaption [18,19,22], and enhancement of eigenvalue
approximation [21,32,40]. A famous example of gradient recovery methods is the Super-
convergent Patch Recovery (SPR) proposed by Zienkiewicz and Zhu [46], also known as ZZ
estimator, which has become a standard tool in many commercial Finite Element softwares
such as ANSYS, Abaqus, and LS-DYNA. An important alternative is the polynomial pre-
serving recovery (PPR) proposed by Zhang and Naga [44], which improved the performance
of SPR on chevron pattern uniformmesh. It has also been implemented by commercial Finite
Element software COMSOLMultiphysics as a superconvergence tool. Nevertheless, studies
of both SPR and PPR have been mostly focused on elliptic problems.

Study on superconvergence of second order hyperbolic equations can be traced back
to [15] where Dougalis and Serbin proved finite element solution was superconvergent to
a special quasi-interpolation of exact solution in one-dimension. Later on, Lin et al. [28]
investigated an interpolated finite element solution for bilinear element and showed it has
superconvergence. Analogous to [28], Shi and Li [34] studied the superconvergence for
a nonlinear second order hyperbolic equation with nonlinear boundary conditions. Recent
works include [37], where Wang et al. showed the superconvergence of mixed finite element
solution to full discrete wave equations. In [3], Baccouch justified that the local discontinuous
Galerkin solution superconverges at Radau points on Cartesian grids. In [12], Cockburn et
al. used hybridizable discontinuous Galerkin methods to solve wave equation and got a
uniform-in-time superconvergence result.

In this paper, we generalize the polynomial preserving recovery (PPR) technique to study
high-frequency wave propagation, governed by a second order hyperbolic equation. First,
we establish the supercloseness between finite element solution and its interpolation with
explicit dependence on wave frequency. Our main tool is the superconvergence of inter-
polation solution of linear element [5,9,42] and quadratic element [23] in the weak sense.
Generalizing PPR from elliptic equations to hyperbolic equations leads to a difficulty that the
superconvergence arguments for elliptic problems, relying on maximal norm of higher order
weak derivative, do not hold for hyperbolic equations due to the loss of maximal principle
[5,9,23,42]. To overcome the difficulty, we need to put more restrictions on the mesh in
order to compensate the loss of order of errors caused by solution regularities. Specifically,
we require the mesh to satisfyCondition (α), i.e. any two adjacent triangles form an O(h1+α)

parallelogram, with a more detailed explanation given in Sect. 2. We also remark that this
mesh restriction is just for theoretical purpose, but not for numerical simulations as shown
by our later examples in Sect. 5.

The superconvergence of PPR for wave equation follows the standard procedure in [1]
that decomposes the error into two parts. The first part can be bounded by the aforementioned
supercloseness results thanking to the boundedness of PPR gradient recovery operator. The
second part is usually bounded by consistency of gradient recovery operator. However, such
type of error estimate, e.g. in [30,31,44], is not sharp for hyperbolic problems since it involves
with the infinity Sobolev norm. In fact, we use the polynomial preserving property of PPR
and scaled Bramble–Hilbert Lemma to establish a sharp bound that only involves with the
L2 Sobolev norm. We remark that the sharp bound actually works for any arbitrary order of
element, although we only consider linear element and quadratic element in this paper.

The rest of the paper is organized as follows. Section 2 introduces preliminaries on wave
equation and the finite element approximation. In Sect. 3, we analyze the supercloseness
between finite element solution and the interpolation of exact solution, and give explicit
dependence of the estimate on wave frequency. Section 4 is devoted to the proof of supercon-
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vergence of PPR. We present several numerical examples to confirm our theoretical results
in Sect. 5, and make conclusive remarks in Sect. 6.

2 Wave Equation and Finite Element Approximation

We shall consider the following linear wave equation

∂2u
∂t2

(x, t) − ∇ · (�(x)∇u(x, t)) = f (x, t), (x, t) ∈ � × (0, T ], (2.1a)

u(x, t) = 0, (x, t) ∈ ∂� × (0, T ], (2.1b)

u(x, 0) = u0(x), x ∈ �, (2.1c)
∂u
∂t (x, 0) = q0(x), x ∈ �, (2.1d)

with the following WKB initial conditions, for k � 1,

u0(x) = A0(x)eikS0(x), (2.2a)

q0(x) = k B0(x)eikS0(x). (2.2b)

Here � is a bounded polygonal domain with Lipschitz boundary ∂� in R
2, f, A0, B0, S0

are given functions, and �(x) is a 2× 2 symmetric positive definite matrix valued function.
k � 1 indicates the wave is of high-frequency.

Computing high-frequency wave propagation (2.1)–(2.2) is an important problem arising
inmany applications including electromagnetic radiation and scattering, seismic and acoustic
waves traveling. There coexists two scales when k � 1 in (2.2): The large length scale is
determined by the characteristic size of �, while the small length scale comes from the
wavelength at the order of O(k−1). The disparity between the two length scales makes direct
numerical computations extremely challenging, which motivates us to study the polynomial
preserving recovery method for (2.1)–(2.2).
Notations We use C to denote a generic positive constant which may be different at different
occurrences. For a sake of simplicity, we use x � y to mean that x ≤ Cy for some constants
C independent of mesh size and frequency of wavefield. For a subdomain A of �, denote
W k,p(A) as the Sobolev space with norm ‖ · ‖k,p,A and seminorm | · |k,p,A. We also denote
Hk(A) = W k,2(A). These are the standard notations for Sobolev spaces and their associate
norms in [6,11].

Following the same notations in [4,29], for v : [0, T ] → H Lebesgue measurable, we
define the following norms

‖v‖L2(0,T ;W k,p(�)) =
(∫ T

0
‖v(·, t)‖2k,p,�dt

)1/2

, (2.3)

and
‖v‖L∞(0,T ;W k,p(�)) = ess sup

0≤t≤T
‖v(·, t)‖k,p,�. (2.4)

In addition, we define

Lq(0, T ; W k,p(�)) = {v : [0, T ] → W k,p(�) : ‖v‖Lq (0,T ;W k,p(�)) < ∞}, (2.5)

where q = 2,∞.
For wave equation (2.1), the following regularity estimate was provided in [17].
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Theorem 2.1 Assume u0 ∈ Hm+1(�), q0 ∈ Hm(�), and d� f
dt�

∈ L2(0, T ; Hm−�(�)). Then

d�u

dt�
∈ L∞(0, T ; Hm+1−�(�)), (� = 0, . . . , m + 1), (2.6)

and we have the following estimate

ess sup
0≤t≤T

m+1∑
�=0

∥∥∥∥d�u

dt�

∥∥∥∥
Hm+1−�(�)

≤ C

(
m∑

�=0

∥∥∥∥d� f

dt�

∥∥∥∥
L2(0,T ;Hm−�(�))

+ ‖u0‖m+1,� + ‖q0‖m,�

)
.

(2.7)

In particular, for wave equation (2.1) with WKB initial conditions (2.2), Theorem 2.1
implies the following regularity estimate with explicit dependence on k.

Theorem 2.2 Assume the same condition as in Theorem 2.1 holds. Let u be solution of wave
equation (2.1a)–(2.1b)with the following WKB initial conditions (2.2a)–(2.2b). Then we have∥∥∥∥d�u

dt�

∥∥∥∥
L∞(0,T ;Hm+1−�(�))

≤ Ckm+1, (2.8)

where C is a number independent of k.

Define the sesquilinear form a(·, ·) as

a(u, v) =
∫

�

∇u · �∇vdx, ∀u, v ∈ H1(�), (2.9)

where v is the complex conjugate of v. Then one can see that a(·, ·) is a continuous and
coercive bilinear form defined on H1

0 (�). In addition, we define the norm

‖ · ‖a,� = √
a(·, ·), (2.10)

which can be easily verified to be equivalent to | · |1,� on H1
0 (�).

The weak formulation of (2.1) is to find u ∈ L2(0, T ; H1
0 (�)) with ∂2u

∂t2
∈

L2(0, T ; H−1(�)) such that(
∂2

∂t2
u(·, t), v

)
+ a(u(·, t), v) = ( f (·, t), v), ∀v ∈ H1

0 (�), t ∈ (0, T ], (2.11)

and

u(x, 0) = u0, x ∈ �, (2.12)

∂u

∂t
(x, 0) = q0, x ∈ �. (2.13)

The existence and uniqueness of the solution to (2.11)–(2.13) were established in [29] for
f ∈ L2(0, T ; H−1(�)) and u0, q0 ∈ H1

0 (�).
Let Th be a conforming triangulation of the domain �, and consists of triangles T with

diameter hT ≤ h. Furthermore, we assume Th is shape-regular in the sense of [11]. The
triangulation Th is called to satisfy Condition (α) if there exists α > 0 such that any two
adjacent triangles form an O(h1+α) parallelogram, which means for any two adjacent trian-
gles (sharing a common edge), the lengths of any two opposite edges differ only by O(h1+α).
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Define the continuous finite element space of order r as

Sh,r = {
v ∈ C(�̄) : v|T ∈ Pr (T ),∀T ∈ Th

} ⊂ H1(�),

where Pr (T ) is the space of polynomials of degree less than or equal to r over T . The set
of nodal point in Sh,r is denote by Nh . Also, we denote Sh,r

0 = Sh,r ∩ H1
0 (�), and I r

h u to
be the standard Lagrange interpolation of polynomial of order r in the finite element space
Sh,r . Then the continuous-time Galerkin approximation to (2.11)–(2.13) reads as, to find
uh ∈ L2(0, T ; Sh,r

0 ) such that,

(∂2uh

∂t2
(·, t), v

)
+ a(uh(·, t), v) = ( f (·, t), v), (2.14)

for any v ∈ Sh,r
0 and t ∈ (0, T ] with

uh(·, 0) = I r
h u0, (2.15)

∂uh

∂t
(·, 0) = I r

h q0. (2.16)

For the approximation (2.14)–(2.16), one can have the following error estimate [4,16].

Theorem 2.3 Let uh be the solution of (2.14)–(2.16). Suppose u ∈ L∞(0, T ; Hr+1(�))

and ∂u
∂t ∈ L2(0, T ; Hr+1(�)), then we have

‖u − uh‖L∞(0,T ;L2(�)) + h‖u − uh‖L∞(0,T ;H1(�))

�hr+1
(

‖u‖L∞(0,T ;Hr+1(�)) +
∥∥∥∂u

∂t

∥∥∥
L2(0,T ;Hr+1(�))

)

�(hk)r+1 + k(hk)r+1

�k(hk)r+1,

(2.17)

where the last inequality is due to k � 1.

Remark 2.4 The H1-semi error in Theorem 2.3 consists of two parts: the first term k(hk)r

can be regarded as interpolation error of u

‖∇u − ∇ I r
h u‖0,� ≤ hr |u|r+1,� ≤ hr kr+1,

while the second term k2(hk)r is due to the interpolation error of ∂u
∂t ,∥∥∥∥∇ ∂u

∂t
− ∇ I r

h
∂u

∂t

∥∥∥∥
0,�

≤ hr |∂u

∂t
|r+1,� ≤ hr kr+2.

This is different from finite element approximation of Helmholtz equation [26,27,38].

Remark 2.5 Theorem 2.3 indicates the mesh size h should be of O(k−3) to give an accurate
approximation to high-frequency propagation by linear element, but this estimate may not
be sharp, as shown later by our numerical results in Sect. 5.

3 Supercloseness of Finite Element Solution

In this section, we establish the supercloseness between finite element solution and the
interpolation of the exact solution for both linear element and quadratic element.
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Lemma 3.1 Assume Th satisfies Condition (α). Let �τ be a piecewise constant matrix func-
tion defined on Th, whose elements �τ i j satisfy

�τ i j � 1, |�τ i j − �τ ′i j | ≤ hα, i = 1, 2; j = 1, 2. (3.1)

Here τ and τ ′ are a pair of triangles sharing a common edge. In addition, suppose u ∈
H1
0 (�) ∩ H2+r (�), then for any vh ∈ Sh,r

0 ,

|
∑
τ∈Th

∫
τ

∇(u − I r
h u) · �τ∇vh | � hr+α‖u‖r+2,�|v|1,�, (3.2)

where r = 1, 2.

Proof For the linear element case, the proof is similar to Lemma 2.1 in [42]. For the quadratic
element case, one can prove it by modifying the proof of Theorem 4.3 in [23]. �
Remark 3.2 It is worth mentioning that the mesh condition is more restrictive than that in
[5,9,42] for linear element, due to the lack of |u|2,∞ estimate for wave equation. Note that
this restriction is technique and just for theoretical purpose. In fact, numerical experiments
in Sect. 5 indicate that one can still get results of superconvergence under general Delaunay
meshes which do not satisfy the Condition (α).

We define the constant matrix function �τ in term of the diffusion coefficient matrix �

in (2.1a) as follows

�τ i j = 1

|τ |
∫

τ

�i j dx, (3.3)

for i, j = 1, 2. We assume � is smooth enough so that the condition (3.1) in Lemma 3.1
holds and the following inequality is also true,

|� − �τ | � h, ∀τ ∈ Th . (3.4)

Subtracting (2.11) from (2.14) implies that, for any v ∈ Sh,r
0 ,

(
∂2

∂t2
uh − ∂2

∂t2
u, v

)
+ a(uh − u, v) = 0, (3.5)

and one can prove the following supercloseness result.

Theorem 3.3 Let u be exact solution to the wave equation (2.11) and uh be solution
of the semi-discrete Galerkin finite element approximation (2.14). Assume the mesh Th

satisfies Condition(α), and u ∈ L∞(0, T ; Hr+2(�)), ∂u
∂t ∈ L2(0, T ; Hr+2(�)), and

∂2u
∂t2

∈ L2(0, T ; Hr+1(�)), then we have

‖uh(·, t) − I r
h u(·, t)‖1,� ≤ Chr+min(1,α)kr+3, (3.6)

where C is a constant independent of k and h.

Proof Denote η = uh − I r
h u and ξ = u − I r

h u, then (3.5) implies that
(

∂2

∂t2
η, v

)
+ a(η, v) =

(
∂2

∂t2
ξ, v

)
+ a(ξ, v), (3.7)

for any v ∈ Sr,h
0 . Taking v = ∂η

∂t brings
(

∂2

∂t2
η,

∂η

∂t

)
+ a

(
η,

∂η

∂t

)
=

(
∂2

∂t2
ξ,

∂η

∂t

)
+ a

(
ξ,

∂η

∂t

)
, (3.8)
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which can be rewritten as

1

2

∂

∂t

(
∂η

∂t
,
∂η

∂t

)
+ 1

2

∂

∂t
a(η, η) =

(
∂2

∂t2
ξ,

∂η

∂t

)
+ a

(
ξ,

∂η

∂t

)
. (3.9)

Integrating (3.9) with respect to t from 0 to s produces

1

2

∥∥∥ ∂

∂t
η(·, s)

∥∥∥2
0,�

+ 1

2
a(η(·, s), η(·, s))

=
∫ s

0

(
∂2

∂t2
ξ(·, t),

∂η(·, t)

∂t

)
dt +

∫ s

0
a

(
ξ(·, t),

∂η(·, t)

∂t

)
dt

=
∫ s

0

(
∂2

∂t2
ξ(·, t),

∂η(·, t)

∂t

)
dt + a(ξ(·, s), η(·, s)) −

∫ s

0
a

(
∂ξ(·, t)

∂t
, η(·, t)

)
dt

=
∫ s

0

(
∂2

∂t2
ξ(·, t),

∂η(·, t)

∂t

)
dt +

∑
τ∈Th

∫
τ

∇ξ(·, t) · �τ∇η(·, t)

−
∑
τ∈Th

∫
τ

∇ξ(·, t) · (�τ − �)∇η(·, t) −
∫ s

0

⎛
⎝ ∑

τ∈Th

∫
τ

∇ ∂ξ(·, t)

∂t
· �τ∇η(·, t)

⎞
⎠ dt

+
∫ s

0

⎛
⎝ ∑

τ∈Th

∫
τ

∇ ∂ξ(·, t)

∂t
· (�τ − �)∇η(·, t)

⎞
⎠ dt

=: I1 + I2 + I3 + I4 + I5,

where we have used the fact η(·, 0) = ∂η
∂t (·, 0) = 0, i.e. (2.15) and (2.16).

We first estimate I1. By Hölder’s inequality and Cauchy’s inequality, one has

I1 ≤
∫ s

0

∥∥∥ ∂2

∂t2
ξ(·, t)

∥∥∥
0,�

∥∥∥ ∂

∂t
η(·, t)

∥∥∥
0,�

dt

≤ C
∫ s

0

∥∥∥ ∂2

∂t2
ξ(·, t)

∥∥∥2
0,�

dt +
∫ s

0

∥∥∥ ∂

∂t
η(·, t)

∥∥∥2
0,�

dt

≤ Ch2r+2
∥∥∥ ∂2

∂t2
u
∥∥∥2

L2(0,T ;Hr+1(�))
+

∫ s

0

∥∥∥ ∂

∂t
η(·, t)

∥∥∥2
0,�

dt,

(3.10)

where we have used the standard L2 norm error estimation of finite element interpolation
I r
h u [6,11]. Lemma 3.1 implies that

I2 ≤ Chr+α‖u(·, s)‖r+2,�|η(·, s)|1,� ≤ Ch2r+2α‖u(·, s)‖2r+2,� + 1

8
‖η(·, s)‖2a,�. (3.11)

I3 is estimated by

I3 ≤
∑
τ∈Th

∫
τ

|∇ξ(·, t)||(�τ − �)||∇ξ(·, s)|

≤ h|ξ(·, s)|1,�|η(·, s)|1,�
≤ Chr+1‖u‖r+1,�|η(·, s)|1,�
≤ Ch2r+2‖u(·, s)‖2r+1,� + 1

8
‖η(·, s)‖2a,�,

(3.12)
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where the third inequality comes from the standard H1 interpolation error estimate [6,11].
For I4, Lemma 3.1 implies

I4 ≤
∫ s

0
hr+α‖∂u

∂t
(·, s)‖r+2,�|η(·, s)|1,�dt

≤Ch2r+2α‖∂u

∂t
‖2L2(0,T ;Hr+2(�))

+
∫ s

0
‖η(·, t)‖2a,�dt.

(3.13)

Similarly, we can get the following estimate of I5

I5 ≤
∫ s

0
Chr+1‖∂u

∂t
(·, s)‖r+1,�|η(·, s)|1,�dt

≤Ch2r+2‖∂u

∂t
‖2L2(0,T ;Hr+1(�))

+
∫ s

0
‖η(·, t)‖2a,�dt.

(3.14)

Combining the error estimates (3.10)–(3.14) gives

1

2

∥∥∥∥ ∂

∂t
η(·, s)

∥∥∥∥
2

0,�
+ 1

8
‖η(·, s)‖2a,�

≤ Ch2r+2
∥∥∥∥∂2u

∂t2

∥∥∥∥
2

L2(0,T ;Hr+1(�))

+ Ch2r+2α
∥∥∥∥∂u

∂t

∥∥∥∥
2

L2(0,T ;Hr+2(�))

Ch2r+2α‖u(·, s)‖2r+2,� + Ch2r+2‖u(·, s)‖2r+1,�

+ Ch2r+2
∥∥∥∥∂2u

∂t2

∥∥∥∥
2

L2(0,T ;Hr+1(�))

+
∫ s

0

∥∥∥∥ ∂

∂t
η(·, t)

∥∥∥∥
2

0,�
dt

+ 2
∫ s

0
‖η(·, t)‖2a,�dt,

(3.15)

and thus Gronwall’s inequality [17] produces
∥∥∥∥ ∂

∂t
η(·, s)

∥∥∥∥
2

0,�
+ ‖η(·, s)‖2a,�

≤ Ch2r+2
∥∥∥∥∂2u

∂t2

∥∥∥∥
2

L2(0,T ;Hr+1(�))

+ Ch2r+2
∥∥∥∥∂u

∂t

∥∥∥∥
2

L2(0,T ;Hr+1(�))

+ Ch2r+2α
∥∥∥∥∂u

∂t

∥∥∥∥
2

L2(0,T ;Hr+2(�))

+ Ch2r+2α‖u(·, s)‖2r+2,�

+ Ch2r+2‖u(·, s)‖2r+1,�.

In particular, we have, for any 0 ≤ s ≤ T ,

|η(·, s)|1,� ≤ C
(

hr+min(1,α)kr+3 + hr+min(1,α)kr+1
)

≤ Chr+min(1,α)kr+3,

where we have used the fact that k � 1 in the last inequality. Replacing s by t completes
our proof. �
Remark 3.4 Using the standard argument instead of superconvergence argument will give
the following error estimate for ‖∇uh − ∇ I r

h u‖0,�,
‖∇uh − ∇ I r

h u‖0,�� hr kr+2. (3.16)
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Remark 3.5 Numerical examples later in Sect. 5 indicate that ‖∇uh − ∇ I r
h u‖0,� � h2 and

‖∇uh −∇ I r
h u‖0,� � k3 for linear element, which means the error estimates (3.6) and (3.16)

are not sharp with respect to k and h respectively.

4 Superconvergence of Polynomial Preserving Recovery

In this section, we analyze the superconvergence of polynomial preserving recovery (PPR)
for wave equation (2.1). Denote the PPR gradient recovery operator by Gh , then Gh is a linear
operator from Sh,r to Sh,r × Sh,r . Given a function uh ∈ Sr

h , it suffices to define (Ghuh)(z)
for all z ∈ Nh . Let z ∈ Nh be a vertex and Kz be a patch of elements around z which
is defined in [31,44]. Select all nodes in Nh ∩ Kz as sampling points and fit a polynomial
pz ∈ Pk+1(Kz) in the least squares sense at those sampling points, i.e.

pz = arg min
p∈Pk+1(Kz)

∑
z̃∈Nh∩Kz

(uh − p)2(z̃). (4.1)

Then the recovered gradient at z is defined as

(Ghuh)(z) = ∇ pz(z).

For linear element, all nodes in Nh are vertices and hence Ghuh is well defined. However,
Nh may contain edge nodes or interior nodes for higher order elements. If z is an edge node
which lies on an edge between two vertices z1 and z2, we define

(Ghuh)(z) = β∇ pz1(z) + (1 − β)∇ pz2(z)

where β is determined by the ratio of distances of z to z1 and z2. If z is an interior node which
lies in a triangle formed by three vertices z1, z2, and z3, we define

(Ghuh)(z) =
3∑

j=1

β j∇ pz j (z),

where β j is the barycentric coordinate of z.

Remark 4.1 It was proved in [30] that certain rank condition and geometric condition guar-
antee the uniqueness of pz in (4.1).

Remark 4.2 In order to avoid numerical instability, a discrete least squares fitting process is
carried out on a reference patch ωz .

For the PPR gradient recovery operator Gh , [30,31,44] proved that Gh has the following
properties:

(i) Gh preserves polynomials of degree r + 1.
(ii) ‖Ghv‖0,τ � |v|1,Kτ ,∀τ ∈ Th , where Kτ := ⋃{Kz : z is a vertex of τ }.
(iii) ‖∇u − Ghu‖0,∞,Kz ≤ Chr+1|u|r+2,∞,Kz .

Note that in Property (iii), ‖∇u − Ghu‖0,∞,Kz is bounded by the W r+2,∞ norm of the exact
solution u. However, such regularity is not available for wave equation (2.1). In the following,
we shall prove a sharp type error estimate analogous to property (iii).

According to Property (i) of Gh , we can prove the following lemma.
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Lemma 4.3 Let Gh : Sh,r → Sh,r × Sh,r be the PPR gradient recovery operator. Given
u ∈ Hr+2(�), then

‖Gh I r
h u − ∇u‖0,τ � hr+1‖u‖r+2,Kτ , (4.2)

for any τ ∈ Th.

Proof Notice that

‖Gh I r
h u − ∇u‖0,τ ≤ ‖Gh I r

h u − Gh I r
h I r+1

h u‖0,τ + ‖Gh I r
h I r+1

h u − ∇u‖0,τ
= ‖Gh I r

h u − Gh I r
h I r+1

h u‖0,τ + ‖Gh I r+1
h u − ∇u‖0,τ

:= I1 + I2,

(4.3)

where we have used the fact that Gh I r
h I r+1

h u = Gh I r+1
h u since we only use nodal points in

the recovery operator Gh . We begin with the estimate of I2. According to Property (i), we
have Gh I r

h v = ∇v for any v ∈ Pr+1(Kτ ), which implies that

I2 =‖Gh(I r+1
h u − v) − ∇(u − v)‖0,τ

≤‖Gh(I r+1
h u − v)‖0,τ + ‖∇(u − v)‖0,τ

�‖∇(I r+1
h u − v)‖0,Kτ + ‖∇(u − v)‖0,τ

�‖∇(I r+1
h u − u)‖0,Kτ + ‖∇(u − v)‖0,Kτ + ‖∇(u − v)‖0,τ

�‖∇(I r+1
h u − u)‖0,Kτ + ‖∇(u − v)‖0,Kτ .

(4.4)

Standard approximation theory of finite element [6,11] implies

‖∇(I r+1
h u − u)‖0,Kτ � hr+1‖u‖r+2,Kτ . (4.5)

Let F(u) = inf
v∈Pr+1(Kτ )

‖∇(u −v)‖0,Kτ , then it is easy to see F(v) = 0 for any v ∈ P
r+1(Kτ ).

By Bramble–Hilbert lemma, one has

‖∇(u − v)‖0,Kτ ≤ hr+1‖u‖r+2,Kτ . (4.6)

Now, we turn to estimate I1. The boundedness of Gh implies

I1 = ‖Gh I r
h u − Gh I r

h I r+1
h u‖0,τ � ‖∇(I r

h u − I r
h I r+1

h u)‖0,Kτ . (4.7)

Notice that I r+1
h v = v and hence I r

h v = I r
h I r+1

h v for all v ∈ Pr+1(Kτ ). Define F̃ =
‖∇(I r

h u − I r
h I r+1

h u)‖0,Kτ . Then it is easy to see that F̃(v) = 0 for any v ∈ Pr+1(Kτ ). Again
Bramble–Hilbert lemma suggests that

‖∇(I r
h u − I r

h I r+1
h u)‖0,Kτ � hr+1‖u‖r+2,Kτ . (4.8)

Combining the estimates (4.3)–(4.8) completes the proof of (4.2). �
Remark 4.4 We prove (4.2) for arbitrary order of Lagrange elements, although we will only
consider the case of linear element and quadratic element.

Lemma 4.3 gives the following error estimate on the whole domain.

Lemma 4.5 Given u ∈ Hr+2(�), we have

‖Gh I r
h u − ∇u‖0,� � hr+1‖u‖r+2,�. (4.9)
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Proof Notice that

‖Gh I r
h u − ∇u‖20,� =

∑
τ∈Th

‖Gh I r
h u − ∇u‖20,τ

�
∑
τ∈Th

h2r+2‖u‖2r+2,Kτ

� h2r+2‖u‖2r+2,�,

where we have used Lemma 4.3 in the derivation of the the first inequality. Taking square
root on both side gives (4.9). �
Now we are ready to present our main superconvergence result.

Theorem 4.6 Let u be exact solution to the wave equation (2.11)–(2.13) and uh be
solution of the semi-discrete Galerkin finite element approximation (2.14)–(2.16). Sup-
pose the mesh Th satisfies Condition(α). In addition assume u ∈ L∞(0, T ; Hr+2(�)),
∂u
∂t ∈ L2(0, T ; Hr+2(�)), and ∂2u

∂t2
∈ L2(0, T ; Hr+1(�)), then for any t ∈ (0, T ], we have

‖Ghuh(·, t) − ∇u(·, t)‖0,� ≤ C(hr+min(1,α)kr+3 + hr+1kr+1), (4.10)

where C is a constant independent of k and h.

Proof Wegive the proof as in [1,44]. Decompose ‖Ghuh(·, t)−∇u(·, t)‖0,� in the following
way:

‖Ghuh(·, t) − ∇u(·, t)‖0,�
= ‖Ghuh(·, t) − Gh I r

h uh(·, t) + Gh I r
h uh(·, t) − ∇u(·, t)‖0,�

≤ ‖Ghuh(·, t) − Gh I r
h uh(·, t)‖0,� + ‖Gh I r

h uh(·, t) − ∇u(·, t)‖0,�
:= I1 + I2.

(4.11)

According to Theorem 3.3, I1 is bounded by
(
hr+min(1,α)kr+3 + hr+min(1,α)kr+1

)
. Lemma

4.5 implies that
I2 ≤‖Gh I r

h u(·, t) − ∇u(·, t)‖0,�
≤Chr+1‖u(·, t)‖r+2,�

≤Chr+1‖u‖L∞(0,T ;Hr+2(�))

≤Chr+1kk+2.

Our proof is completed by combining the bound of I1 and I2. �
Remark 4.7 We decompose ‖Ghuh − ∇u‖0,� into two parts ‖Ghuh − Gh I r

h u‖0,� and
‖Gh I r

h u − ∇u‖0,�. However, ‖Ghuh − Gh I r
h u‖0,� � ‖∇uh − ∇ I r

h u‖0,�. As indicated
in Remark 3.5, the error estimate (3.6) is not sharp with respect to k and hence the error
estimate (4.10) is not sharp with respect to k.

5 Numerical Experiment

In the section,wepresent several numerical examples including both lowandhigh frequencies
to illustrate the superconvergence theory established in previous sections. In all the following
numerical examples, we take time step as approximately a quarter of the space size, i.e.,
δt ≈ 0.25h.
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5.1 Numerical Results for Linear Element

In this subsection, we consider � to be an identity matrix I2×2 in (2.1), with the following
initial conditions,

u(x, 0) = sin(πx1) sin(πx2), x ∈ �,

∂u

∂t
(x, 0) = − sin(πx1) sin(πx2), x ∈ �,

and f is chosen to fit the exact solution u(x, t) = e−t sin(πx1) sin(πx2) and � = [0, 1] ×
[0, 1].

In order to obtain superconvergence results of linear element, we consider an uncondition-
ally stable second order accurate time discretization. Let N be a positive integer and define
the time step as

δt = T

N
, tn = nδt, n = 0, 1, . . . , N . (5.1)

For any function w, the value of w at time tn is denoted by wn . We also introduce the
following notation

wn+1/2 = wn+1 + wn

2
, wn,1/4 = wn+1 + 2wn + wn−1

4
,

∂tw
n+1/2 = wn+1 − wn

δt
, ∂tw

n = wn+1 − wn−1

2δt
,

∂t tw
n = wn+1 − 2wn + wn−1

δt2
.

(5.2)

We consider the following full discrete Galerkin approximation [16] of linear element, i.e.,
to find a sequence {un

h}N
n=1 ∈ Sh,1 such that

(∂t t u
n
h, vh) + a(un,1/4

h , vh) = ( f n,1/4, vh), ∀vh ∈ Sh,1. (5.3)

Note the above scheme needs initial conditions of two time steps. As in [41], we consider
Taylor expansion of u at t = 0,

u(x, δt) = u(x, 0) + δt
∂u

∂t
(x, 0) + δt2

2

∂2u

∂t2
(x, 0) + δt3

6

∂3u

∂t3
(x, 0) + O(δt4),

and replace the higher derivatives of t by derivatives of x using (2.1), which yields the
following initial conditions,

u0
h = I 1h u0,

u1
h = I 1h u0

h + δt I 1h q0 + δt2

2
I 1h (�u0 + I 1h f (x, 0)) + δt3

6
I 1h (�q0 + ∂ f

∂t
(x, 0)),

with u0 and q0 given in (2.2).
Table 1 shows the numerical errors at the final computational time T = 1 on regular

pattern uniform mesh. As we expected, ‖∇u − ∇uh‖0,� decays at the optimal rate of O(h).
‖∇uh − ∇ I 1h u‖0,� and ‖∇uh − Ghuh‖0,� both converge at the superconvergence rate of
O(h2), which is consistent with our theoretical results in Theorems 3.3 and 4.6, respectively.
We test on chevron pattern uniform mesh and its numerical errors are displayed in Table 2,
which is similar to regular pattern uniform mesh.

Next, we turn to Criss-cross pattern uniformmesh and we list its numerical errors in Table
3. Different from the previous two types of uniformmeshes, this mesh pattern doesn’t satisfy
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Table 1 Numerical results of linear element case on regular pattern uniform mesh

Dof ‖∇u − ∇uh‖0,� order ‖∇uh − ∇ I 1h u‖0,� order ‖∇uh − Ghuh‖0,� order

289 8.009e−02 – 3.052e−03 – 1.738e−02 –

1089 4.010e−02 0.52 7.712e−04 1.04 4.585e−03 1.00

4225 2.006e−02 0.51 1.960e−04 1.01 1.174e−03 1.00

16641 1.003e−02 0.51 4.950e−05 1.00 2.968e−04 1.00

66049 5.014e−03 0.50 1.244e−05 1.00 7.459e−05 1.00

Table 2 Numerical results of linear element on chevron pattern uniform mesh

Dof ‖∇u − ∇uh‖0,� order ‖∇uh − ∇ I 1h u‖0,� order ‖∇uh − Ghuh‖0,� order

289 8.019e−02 – 5.709e−03 – 1.224e−02 –

1089 4.019e−02 0.52 3.664e−03 0.33 3.170e−03 1.02

4225 2.007e−02 0.51 5.708e−04 1.37 8.084e−04 1.01

16641 1.003e−02 0.51 1.348e−04 1.05 2.038e−04 1.01

66049 5.014e−03 0.50 1.642e−05 1.53 5.114e−05 1.00

Table 3 Numerical results of linear element on Criss-cross pattern uniform mesh

Dof ‖∇u − ∇uh‖0,� order ‖∇uh − ∇ I 1h u‖0,� order ‖∇uh − Ghuh‖0,� order

545 6.238e−02 – 6.471e−02 – 8.723e−03 –

2113 3.735e−02 0.38 2.135e−02 0.82 1.361e−03 1.37

8321 2.275e−02 0.36 1.542e−02 0.24 3.380e−04 1.02

33025 1.427e−02 0.34 1.089e−02 0.25 8.180e−05 1.03

131585 7.877e−03 0.43 6.239e−03 0.40 2.006e−05 1.02

Condition (α) and thus there is no supercloseness between the gradient of finite element
solution and the gradient of interpolation of exact solution; see the fifth column of Table 3.
However, even in this case, our results still show the superconvergent of gradient at the rate of
O(h2); see the seventh column of Table 3. In fact, we also tested Union-Jack pattern uniform
mesh, but did not present the numerical results here due to the similarity to the results by
using Criss-cross pattern uniform mesh.

At the end, we consider unstructured meshes. We start from an initial mesh generated by
EasyMesh [33] followed by four levels of uniform refinement. Table 4 shows the superclose-
ness and superconvergence of recovered gradient.

5.2 Numerical Results for Quadratic Element

In this subsection, we consider (2.1) with � = I2×2 that has a traveling wave solution as in
[10]. The domain is chosen as � = [0, 2] × [0, 2], and the initial conditions and boundary
conditions are given by the exact solution

u(x, t) = cos(
√
2π t + πx1) cos(πx2).
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Table 4 Numerical results of linear element on Delaunay mesh

Dof ‖∇u − ∇uh‖0,� order ‖∇uh − ∇ I 1h u‖0,� order ‖∇uh − Ghuh‖0,� order

513 4.567e−02 – 7.868e−03 – 7.587e−03 –

1969 2.266e−02 0.52 2.137e−03 0.97 2.122e−03 0.95

7713 1.131e−02 0.51 5.686e−04 0.97 5.782e−04 0.95

30529 5.651e−03 0.50 1.486e−04 0.98 1.529e−04 0.97

121473 2.825e−03 0.50 3.904e−05 0.97 4.030e−05 0.97

To get superconvergence of quadratic element, one needs higher order time discretiza-
tion, and thus we choose the fourth order time discretization used in [10,35] which can be
reformulated into a predictor–corrector form. The second-order predictor step is(

u�
h − 2un

h + un−1
h

δt2
, wh

)
= −(∇un

h,∇wh), wh ∈ Sr
h; (5.4)

and the corrector step is

vh = u�
h − 2un

h + un−1
h

δt2
, (5.5)

(un+1
h , wh) = (u�

h, wh) − δt4

12
(∇vh,∇wh), wh ∈ Sr

h . (5.6)

In the following, we compute the numerical error at time T = 1. Table 5 lists the numerical
results for quadratic element on regular pattern uniform mesh. Consistent with Theorems 3.3
and 4.6, the convergence rate of O(h3) is observed for ‖∇uh − ∇ I 2h u‖0,� and ‖∇uh −
Ghuh‖0,�.

Table 6 shows the convergence of numerical errors for quadratic element on the same
Delaunay mesh as in Example 1, from which one can clearly observe desired supercloseness
results and superconvergence results.

5.3 Numerical Results for High-Frequency Wave Propagation

In this subsection, we consider (2.1) with � = I2×2, and the high-frequency WKB initial
conditions, {

u0(x) = A0(x)eikS0(x),

∂t u0(x) = k B0(x)eikS0(x).

Table 5 Numerical results of quadratic element on regular pattern mesh

Dof ‖∇u − ∇uh‖0,� order ‖∇uh − ∇ I 1h u‖0,� order ‖∇uh − Ghuh‖0,� order

1089 6.697e−02 – 8.972e−03 – 1.370e−02 –

4225 1.686e−02 1.04 1.155e−03 1.55 1.191e−03 1.84

16641 4.220e−03 1.02 1.467e−04 1.52 1.136e−04 1.73

66049 1.055e−03 1.01 1.598e−05 1.62 1.188e−05 1.65

263169 2.639e−04 1.01 2.334e−06 1.40 1.340e−06 1.58
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Table 6 Numerical results of quadratic element on Delaunay mesh

Dof ‖∇u − ∇uh‖0,� order ‖∇uh − ∇ I 1h u‖0,� order ‖∇uh − Ghuh‖0,� order

1969 2.408e−02 – 2.347e−03 – 3.480e−03 –

7713 6.033e−03 1.03 4.043e−04 1.31 3.365e−04 1.74

30529 1.509e−03 1.01 7.084e−05 1.28 3.493e−05 1.66

121473 3.775e−04 1.01 1.247e−05 1.26 4.005e−06 1.57

484609 9.439e−05 1.00 2.195e−06 1.26 5.148e−07 1.49
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Fig. 1 Plot of high frequency wave when wave number k = 64 when mesh size h = 2−10. a Real part of
exact solution. bReal part of numerical solution. c Imagary part of exact solution. d Imagary part of numerical
solution

We chose f, A0, B0, S0 to fit the exact solution,

u = exp (−100((x + t)2 + y2)) exp (ik(−x + cos(2y) + 5t)). (5.7)

We compute the numerical solution to (2.1) at time t = 1. The computational domain is
[−1.5, 0.5] × [−1, 1]. The mesh Th is obtained by first dividing the computation domain �

into N × N squares and then dividing every square into two right triangles. Let uh be the
linear finite element solution on a mesh Th at time T = 1. The number of degree of freedom
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Fig. 2 Plot of high frequency wave when wave number k = 128 when mesh size h = 2−10. a Real part of
exact solution. bReal part of numerical solution. c Imagary part of exact solution. d Imagary part of numerical
solution
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Fig. 3 Plot of ‖∇u − ∇uh‖0,� with respect to h
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Fig. 4 Plot of ‖∇uh − ∇ I 1h u‖0,� with respect to h

Number of DOF
103 104 105 106 107

10-4

10-3

10-2

10-1

100

101

102

103

1

1

k=1
k=2
k=4
k=8
k=16
k=32
k=64
k=128

Fig. 5 Plot of ‖∇u − Ghuh‖0,� with respect to h

is (N + 1)2 and mesh size is h = 2
N . Here we take N = 2 j with j = 6, 7, 8, 9, 10. Note that

in this case α = 1. In the following, we compute for both low-frequency and high-frequency
wave. Specifically, we choose k = 2 j , with j = 0, 1, 2, 3, 4, 5, 6, 7.

At initial time t = 0, the wave packet is localized at the point (0, 0). At t = 1, the wave
packet propagates to the point (−1, 0). As one can observe from (5.7), there would be high-
frequency oscillations in the solutions of large k. To illustrate this, we graph the real and
imaginary part of the exact solutions on the small domain [−1.25, 0.75] × [−0.25, 0.25] for
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Table 7 Results of high frequency wave when k = 64

Dof ‖∇u − ∇uh‖0,� order ‖∇uh − ∇ I 1h u‖0,� order ‖∇uh − Ghuh‖0,� order

4225 2.599e+01 – 2.556e+01 – 1.390e+01 –

16641 7.874e+00 0.87 7.425e+00 0.90 6.661e+00 0.54

66049 2.433e+00 0.85 2.013e+00 0.95 2.154e+00 0.82

263169 8.593e−01 0.75 5.139e−01 0.99 5.773e−01 0.95

1050625 3.682e−01 0.61 1.286e−01 1.00 1.459e−01 0.99
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100
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1

2

Fig. 6 Plot of ‖∇u − ∇uh‖0,� with respect to k

k = 64 and k = 128, see Figs. 1a, c and 2a, c. We also plot the real and imaginary part of
numerical solutions on the finest mesh Th with h = 2−10 for k = 64 and k = 128. One can
see that the numerical solutions match well with the exact solutions.

Figure 3 plots H1-semi error of finite element solution for different numbers of degree
of freedoms. For low frequency wave (k = 1, 2, 4, 8, 16), it shows optimal convergence
rate. For high frequency wave (k = 32, 64, 128), it requires the mesh size small enough to
converge optimally at the rate of O(h).

Figure 4 shows the supercloseness between finite element solution and the interpolation of
exact solution. Similar to H1-semi error of finite element solution, it shows the order of O(h2)

supercloseness results for both cases of low-frequency and high-frequency waves. Figure 5
shows the numerical error of recovered gradient, inwhich the order of O(h2) superconvergent
rate can be observed. Table 7 gives the numerical results for the case k = 64, in which one
can notice that the errors of recovered gradient are smaller than the errors of gradient of finite
element solution even in coarse meshes.

To see clearly the dependence of errors on k, we plot the above three errors with respect
to k on the same mesh Th , see Figs. 6, 7 and 8. It shows that ‖∇u − ∇uh‖0,� depends
on k2 while ‖∇uh − ∇ I 1h u‖0,� and ‖Ghuh − ∇u‖0,� depend on k3. It means our error
estimates may not be sharp with respect to k as we comment in Remarks 2.5, 3.5 and
4.7.
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Fig. 7 Plot of ‖∇uh − ∇ I 1h u‖0,� with respect to k
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Fig. 8 Plot of ‖∇u − Ghuh‖0,� with respect to k

6 Conclusion

In this paper, we generalized the polynomial preserving recovery (PPR) method to compute
wave propagation of high-frequency. Specifically, we analyzed the supercloseness of finite
element solution and interpolation solution with explicit dependence on wave frequency k,
and proved the superconvergence of PPR for wave equation. Numerical results were given
in both low frequency and high frequency to confirm our theoretic results, which indicated
the sharpness of theoretical results with respect to h. The purpose of PPR is not only to
improve the gradient approximation but also to serve as an asymptotically exact a posteriori
error estimator for wave propagation. One may notice that, Theorem 4.6 implies that one
needs at least a mesh size of order o(k) to have an accurate approximation which might be
still computationally expensive in high dimensional cases. In future, we plan to relax this
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mesh-size restriction by including high-frequency elements (e.g. high-frequency planewaves
or complex Gaussian functions) in the finite element method as in the tailored finite point
method and frozen Gaussian approximation [24,43].
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