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1 Introduction

A tremendous variety of science and engineering applications, e.g. the buckling of columns
and shells and the vibration of elastic bodies, containmodels of eigenvalue problems of partial
differential equations. A recent survey article [17] of SIAM Review listed 515 references on
theory and application of the Laplacian eigenvalue problems. As one of the most popular
numerical methods, finite element method has attracted considerable attention in numerical
solution of eigenvalue problems. A priori error estimates for the finite element approximation
of eigenvalue problems have been investigated bymany authors, see e.g., Babuška andOsborn
[5,6], Chatelin [9], Strang and Fix [38], and references cited therein.

To reduce the computational cost of eigenvalue problems, Xu and Zhou introduced a
two-grid discretization scheme [42]. Later on, similar ideas were applied to non self-adjoint
eigenvalue problems [23] and semilinear elliptic eigenvalue problems [11]. Furthermore,
it also has been generalized to three-scale discretization [16] and multilevel discretization
[25]. Recently, a new shifted-inverse power method based two-grid scheme was proposed in
[22,43].

To improve accuracy of eigenvalue approximation, many methods have been proposed.
In [37], Shen and Zhou introduced a defect correction scheme based on averaging recovery,
like a global L2 projection and a Clément-type operator. In [34], Naga, Zhang, and Zhou
used Polynomial Preserving Recovery to enhance eigenvalue approximation. In [40],Wu and
Zhang further showed polynomial preserving recovery can also enhance eigenvalue approx-
imation on adaptive meshes. The idea was further studied in [15,31]. Alternatively, Racheva
and Andreev proposed a two-space method to achieve better eigenvalue approximation [36]
and it was also applied to biharmonic eigenvalue problem [1].

In this paper, we propose some fast and efficient solvers for elliptic eigenvalue problems.
We combine ideas of the two-grid method, two-space method, shifted-inverse power method,
and PPR enhancement to design our new algorithms. The first purpose is to introduce two
superconvergent two-gridmethods for eigenvalue problems. Our first algorithm is a combina-
tion of the shifted-inverse power based two-grid scheme [22,43] and polynomial preserving
recovery enhancing technique [34]. The second algorithm can be viewed as a combination
of the two-grid scheme [22,43] and the two-space method [1,36]. It can be thought as a
special hp method. The new proposed methods enjoy all advantages of the above methods:
low computational cost and superconvergence.

Solutions of practical problems are often suffered from low regularity. Adaptive finite
element method(AFEM) is a fundamental tool to overcome such difficulty. In the con-
text of adaptive finite element method for elliptic eigenvalue problems, residual type a
posteriori error estimators are analyzed in [14,20,21,28,39] and recovery type a posteri-
ori error estimators are investigated by [27,29,40]. For all adaptive methods mentioned
above, an algebraic eigenvalue problem has to be solved during every iteration, which is
very time consuming. This cost dominates the computational cost of AFEM and usually
is ignored. To reduce computational cost, Mehrmann and Miedlar [30] introduced a new
adaptive method which only requires an inexact solution of algebraic eigenvalue equation
on each iteration by only performing a few iterations of Krylov subspace solver. Recently,
Li and Yang [24] proposed an adaptive finite element method based on multi-scale dis-
cretization for eigenvalue problems and Xie [41] introduced a type of adaptive finite element
method based on the multilevel correction scheme. Both methods only solve an eigen-
value problem on the coarsest mesh and solve boundary value problems on adaptive refined
meshes.
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The second purpose of this paper is to propose two multilevel adaptive methods. Using
our methods, solving an eigenvalue problem by AFEM will not be more difficult than solv-
ing a boundary value problem by AFEM. The most important feature which distinguishes
them from the methods in [24,41] is that superconvergence of eigenfunction approximation
and ultraconvergence (two order higher) of eigenvalue approximation can be numerically
observed.

The rest of this paper is organized as follows. In Sect. 2, we introduce finite element
discretization of elliptic eigenvalue problem and polynomial preserving recovery. Section 3
is devoted to presenting two superconvergent two-grid methods and their error estimates.
In Sect. 4, we propose two multilevel adaptive methods. In Sect. 5, we use some numerical
examples to demonstrate efficiency of our new methods. Finally, conclusive remarks are
made in Sect. 6.

2 Preliminary

In this section, we first introduce the model eigenvalue problem and its conforming finite
element discretization. Then, we give a simple description of polynomial preserving recovery
for linear element.

2.1 A PDE Eigenvalue Problem and its Finite Element Discretization

Let � ⊂ R
2 be a polygonal domain with Lipschitz continuous boundary ∂�. Throughout

this article, we shall use the standard notation for Sobolev spaces and their associated norms,
seminorms, and inner products as in [8,12]. For a subdomain G of �, Wk,p(G) denotes the
Sobolev spacewith norm ‖·‖k,p,G and the seminorm |·|k,p,G .When p = 2, we denote simply
Hm(G) = Wm,2(G) and the subscript is omitted in corresponding norms and seminorms.
In this article, the letter C , with or without subscript, denotes a generic constant which is
independent of mesh size h andmay not be the same at each occurrence. To simplify notation,
we denote X ≤ CY by X � Y .

Consider the following second order self adjoint elliptic eigenvalue problem:{−∇(D∇u) + cu = λu, in �,

u = 0, on ∂�; (2.1)

where D is a 2 × 2 symmetric positive definite matrix and c ∈ L∞(�). Define a bilinear
form a(·, ·) : H1(�) × H1(�) → R by

a(u, v) =
∫

�

(D∇u · ∇v + cuv)dx .

Without loss of generality, we may assume that c ≥ 0. It is easy to see that

a(u, v) ≤ C‖u‖1,�‖v‖1,�, ∀u, v ∈ H1
0 (�),

and
a(u, u) ≥ α‖u‖21,�, ∀u ∈ H1

0 (�).

for some α > 0. Define ‖ · ‖a,� = √
a(·, ·). Then ‖ · ‖a,� and ‖ · ‖1,� are two equivalent

norms in H1
0 (�).

The variational formulation of (2.1) reads as: Find (λ, u) ∈ R× H1
0 (�) with u �= 0 such

that
a(u, v) = λ(u, v), ∀v ∈ H1

0 (�). (2.2)
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It is well known that (2.2) has a countable sequence of real eigenvalues 0 < λ1 ≤ λ2 ≤
λ3 ≤ · · · → ∞ and corresponding eigenfunctions u1, u2, u3, · · · which can be assumed to
satisfy a(ui , u j ) = λi (ui , u j ) = δi j . In the sequence {λ j }, the λi are repeated according to
geometric multiplicity.

Let Th be a conforming triangulation of the domain � into triangles T with diameter hT
less than or equal to h. Furthermore, assume Th is shape regular [12]. Let r ∈ {1, 2} and
define the continuous finite element space of order r as

Sh,r = {
v ∈ C(�̄) : v|T ∈ Pr (T ),∀T ∈ Th

} ⊂ H1(�),

where Pr (T ) is the space of polynomials of degree less than or equal to r over T . In addition,
let Sh,r

0 = Sh,r ∩ H1
0 (�). In most cases, we shall use linear finite element space and hence

denote Sh,1 and Sh,1
0 by Sh and Sh0 to simplify notation. The finite element discretization of

(2.1) is : Find (λh, uh) ∈ R × Sh,r
0 with uh �= 0 such that

a(uh, vh) = λh(uh, vh), ∀vh ∈ Sh,r
0 . (2.3)

Similarly, (2.3) has a finite sequence of eigenvalues 0 < λ1,h ≤ λ2,h ≤ · · · ≤ λnh ,h
and corresponding eigenfunctions u1,h, u2,h, · · · , unh ,h which can be chosen to satisfy
a(ui,h, u j,h) = λi,h(ui,h, u j,h) = δi j with i, j = 1, 2, · · · , nh and nh = dim Sh,r

0 .
Suppose that the algebraic multiplicity of λi is equal to q , i.e. λi = λi+1 = · · · = λi+q−1.

Let M(λi ) be the space spanned by all eigenfunctions corresponding to λi and Mh(λi ) be
the direct sum of eigenspaces corresponding to all eigenvalue λi,h that convergences to λi .
Also, let M̂(λi ) = {v : v ∈ M(λi ), ‖v‖a = 1} and M̂h(λi ) = {v : v ∈ Mh(λi ), ‖v‖a = 1}.

In addition, we introduce two linear operators T : L2(�) → H1
0 (�) and Th,r : L2(�) →

Sh,r
0 (�) such that

a(T f, v) = ( f, v), ∀v ∈ H1
0 (�). (2.4)

and
a(Th,r f, v) = ( f, v), ∀v ∈ Sh,r

0 (�). (2.5)

Let

ηa(h) = sup
f ∈H1

0 (�),‖ f ‖a=1

inf
v∈Sh,r

‖T f − v‖a, (2.6)

δh(λi ) = sup
w∈M̂(λi )

inf
v∈Sh,r

‖w − v‖a, (2.7)

ρ� = sup
f ∈L2(�),‖ f ‖0=1

inf
v∈Sh,r

‖T f − v‖a . (2.8)

From standard approximation theory [8,12], we can see that

δh(λk) � ηa(h) � ρ� � hr , (2.9)

provided that T f ∈ Hr+1(�) and M̂(λi ) ⊂ Hr+1(�).
For the conforming finite element discretization (2.3), the following result has been estab-

lished by many authors [6,42].

Theorem 2.1 Suppose M(λi ) ⊂ H1
0 (�) ∩ Hr+1(�). Let λi,h and λi be the i th eigenvalue

of (2.3) and (2.2), respectively. Then

λi ≤ λi,h ≤ λi + Ch2r . (2.10)

123



J Sci Comput (2017) 70:125–148 129

For any eigenfunction ui,h corresponding to λi,h satisfying ‖ui,h‖a,� = 1, there exists ui ∈
M(λi ) such that

‖ui − ui,h‖a,� ≤ Chr . (2.11)

Before ending this subsection, we present an important identity [6] of eigenvalue and
eigenfunction approximation.

Lemma 2.2 Let (λ, u) be the solution of (2.2). Then for any w ∈ H1
0 (�)\{0}, there holds

a(w,w)

(w,w)
− λ = a(w − u, w − u)

(w,w)
− λ

(w − u, w − u)

(w,w)
. (2.12)

This identity shall play an important role in our superconvergence analysis.

2.2 Polynomial Preserving Recovery

Polynomial Preserving Recovery (PPR) [32,33,45] is an important alternative of the famous
Superconvergent Patch Recovery proposed by Zienkiewicz and Zhu [47]. Let Gh : Sh →
Sh × Sh be the PPR operator and uh be a function in Sh . For any vertex z on Th , construct
a patch of elements Kz containing at least six vertices around z. Select all vertices in Kz as
sampling points and fit a quadratic polynomial pz ∈ P2(Kz) in least square sense at those
sampling points. Then the recovered gradient at z is defined as

(Ghuh)(z) = ∇ pz(z).

Ghuh on the whole domain is obtained by interpolation. In [33,45], Zhang and Naga proved
that Gh enjoys the following properties

(1) ‖∇u − GhuI ‖ � h2|u|3,�, where uI is the linear interpolation of u in Sh .
(2) ‖Ghvh‖0,� � ‖∇vh‖0,�,∀vh ∈ Sh .

According to [34], two adjacent triangles (sharing a common edge) form an O(h1+α)

(α > 0) approximate parallelogram if the lengths of any two opposite edges differ by only
O(h1+α).

Definition 2.3 The triangulationTh is said to satisfyConditionα if any two adjacent triangles
form an O(h1+α) parallelogram.

Using the same methods [37,45], we can prove the following superconvergence result:

Theorem 2.4 Suppose M(λi ) ⊂ H1
0 (�) ∩ W 3,∞(�) and Th satisfies Condition α. Let

Gh be the polynomial preserving recovery operator. Then for any eigenfunction of (2.3)
corresponding to λi,h, there exists an eigenfunction ui ∈ M(λi ) corresponding to λi such
that ∥∥∥D 1

2 ∇ui − D
1
2 Ghui,h

∥∥∥
0,�

� h1+β‖ui‖3,∞,�, β = min(α, 1). (2.13)

As pointed out in [34], α = ∞ if Th is generated using regular refinement. Fortunately,
the fine grid Th is always a regular refinement of some coarse grid TH for two-grid method.
When we introduce two-grid methods in Sect. 3, we only perform gradient recovery on fine
grid Th . Thus we assume α = ∞ and hence β = 1 in Sect. 3.
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3 Superconvergent Two-Grid Methods

In the literature, two-grid methods [22,42,43] were proposed to reduce the cost of eigenvalue
computations. To further improve the accuracy, two different approaches: gradient recovery
enhancement [31,34,37] and two-space methods [1,36] can be used. Individually, those tools
are useful in certain circumstances. Combining them properly, we are able to design much
effective and superconvergence algorithms, which we shall describe below.

3.1 Gradient Recovery Enhanced Shifted Inverse Power Two-Grid Scheme

In this scheme, we first use the shifted inverse power based two-grid scheme [22,43] and
then apply the gradient recovery enhancing technique [34].

Algorithm 1

1. Solve the eigenvalue problem on a coarse grid TH : Find (λi,H , ui,H ) ∈ R × SH0 and ‖ui,H ‖a = 1
satisfying

a(ui,H , vH ) = λi,H (ui,H , vH ), ∀vH ∈ SH0 . (3.1)

2. Solve a source problem on the fine grid Th : Find uih ∈ Sh0 such that

a
(
uih , vh

)
− λi,H

(
uih , vh

)
= (

ui,H , vh
)
, ∀vh ∈ Sh0 , (3.2)

and set ui,h = uih
‖uih‖a .

3. Apply the gradient recovery operator Gh on ui,h to get Ghu
i,h .

4. Set

λi,h =
a

(
ui,h , ui,h

)
(
ui,h , ui,h

) −

∥∥∥∥D 1
2 ∇ui,h − D

1
2 Ghu

i,h
∥∥∥∥
2

0,�(
ui,h , ui,h

) . (3.3)

In the proof of our main superconvergence result, we need the following Lemma.

Lemma 3.1 Suppose that M(λi ) ⊂ H1
0 (�) ∩ H2(�). Let (λi,h, ui,h) be an approximate

eigenpair of (2.2) obtained by Algorithm 1 and let H be properly small. Then

dist
(
ui,h, Mh(λi )

)
� H4 + h2, (3.4)

where dist(ui,h, Mh(λi )) = inf
v∈Mh(λi )

‖ui,h − v‖a,�.

Proof Let u0 = λi,HTh,1ui,H/‖λi,HTh,1ui,H‖a . According to formula (4.4) in [43],we know
that

dist
(
u0, M̂(λi )

)
≤ C

(
δ2H (λi ) + ηa(H)δH (λi ) + δh(λi )

)
� H2 + h, (3.5)
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where we have used (2.9). Formula (4.7) in [43] implies

dist
(
ui,h, Mh(λi )

)
�

(
λi,H − λi

)
dist

(
u0, M̂(λi )

)
+ δH (λi )

2δh(λi )

� H2(H2 + h) + H2h

� H4 + H2h

� H4 + h2,

where we have used (2.9), (3.5) and Young’s inequality. It completes our proof. ��
Based on the above Lemma, we can establish the superconvergence result for eigenfunc-

tions.

Theorem 3.2 Suppose that M(λi ) ⊂ H1
0 (�)∩W 3,∞(�) . Let (λi,h, ui,h) be an approximate

eigenpair of (2.2) obtained by Algorithm 1 and let H be properly small. Then there exists
ui ∈ M(λi ) such that ∥∥∥D 1

2 Ghu
i,h − D

1
2 ∇ui

∥∥∥
0,�

� (H4 + h2). (3.6)

Proof Let the eigenfunctions {u j,h}i+q−1
j=i be an orthonormal basis of Mh(λi ). Note that

dist
(
ui,h, Mh(λi )

)
=

∥∥∥∥∥∥u
i,h −

i+q−1∑
j=i

a
(
ui,h, u j,h

)
u j,h

∥∥∥∥∥∥
a,�

.

Let ũh = ∑i+q−1
j=i a(ui,h, u j,h)u j,h . According to Theorem 2.4, there exist {ũ j }i+q−1

j=i ⊂
M(λi ) suth that

‖D 1
2 Ghu j,h − D

1
2 ∇ũ j‖0,� � h2. (3.7)

Let ui = ∑i+q−1
j=i a(ui,h, u j,h)ũ j ; then ui ∈ M(λi ). Using (3.7), we can derive that

∥∥∥D 1
2 Ghũ

h − D
1
2 ∇ui

∥∥∥
0,�

=
∥∥∥∥∥∥
i+q−1∑
j=i

a
(
ui,h, u j,h

) (
D

1
2 Ghu j,h − D

1
2 ∇ũ j

)∥∥∥∥∥∥
0,�

�

⎛
⎝i+q−1∑

j=i

∥∥∥(
D

1
2 Ghu j,h − D

1
2 ∇ũ j

)∥∥∥2
0,�

⎞
⎠

1
2

� h2.

Thus, we have ∥∥∥D 1
2 Ghu

i,h − D
1
2 ∇ui

∥∥∥
0,�

≤
∥∥∥D 1

2 Gh

(
ui,h − ũh

)∥∥∥
0,�

+
∥∥∥D 1

2 Ghũh − D
1
2 ∇ui

∥∥∥
0,�

�
∥∥∥Gh

(
ui,h − ũh

)∥∥∥
0,�

+ h2

�
∥∥∥∇

(
ui,h − ũh

)∥∥∥
0,�

+ h2
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�
∥∥∥ui,h − ũh

∥∥∥
a,�

+ h2

� (H4 + h2) + h2

� H4 + h2;
where we use Lemma 3.1 to bound ‖ui,h − ũh‖a,�. ��

The following Lemma is needed in the proof of a superconvergence property of our
eigenvalue approximation.

Lemma 3.3 Suppose that M(λi ) ⊂ H1
0 (�) ∩ W 3,∞(�). Let (λi,h, ui,h) be an approximate

eigenpair of (2.2) obtained by Algorithm 1 and let H be properly small. Then∥∥∥D 1
2 Ghu

i,h − D
1
2 ∇ui,h

∥∥∥
0,�

� (H2 + h). (3.8)

Proof Let ũh be defined as in Theorem 3.2. Then we have∥∥∥D 1
2 Ghu

i,h − D
1
2 ∇ui,h

∥∥∥
0,�

≤
∥∥∥D 1

2 Ghu
i,h − D

1
2 Ghũh

∥∥∥
0,�

+
∥∥∥D 1

2 Ghũh − D
1
2 ∇ũh

∥∥∥
0,�

+
∥∥∥D 1

2 ∇ũh − D
1
2 ∇ui,h

∥∥∥
0,�

�
∥∥∥Ghu

i,h − Ghũh
∥∥∥
0,�

+
∥∥∥D 1

2 Ghũh − D
1
2 ∇ũh

∥∥∥
0,�

+
∥∥∥D 1

2 ∇ũh − D
1
2 ∇ui,h

∥∥∥
0,�

�
∥∥∇ui,h − ∇ũh

∥∥
0,� +

∥∥∥D 1
2 Ghũh − D

1
2 ∇ũh

∥∥∥
0,�

�
∥∥ui,h − ũh

∥∥
a,�

+
∥∥∥D 1

2 Ghũh − D
1
2 ∇ũh

∥∥∥
0,�

�
(
H4 + h2

) + h

�
(
H2 + h

)
.

Here we use the fact that ‖ · ‖a,� and ‖ · ‖1,� are two equivalent norms on H1
0 (�). ��

Nowwe are in a perfect position to prove our main superconvergence result for eigenvalue
approximation.

Theorem 3.4 Suppose that M(λi ) ⊂ H1
0 (�)∩W 3,∞(�). Let (λi,h, ui,h) be an approximate

eigenpair of (2.2) obtained by Algorithm 1 and let H be properly small.

|λi,h − λi | � H6 + h3. (3.9)

Proof It follows from (2.12) and (3.3) that

λi,h − λi

= a
(
ui,h, ui,h

)
(
ui,h, ui,h

) −

∥∥∥D 1
2 ∇ui,h − D

1
2 Ghui,h

∥∥∥2
0,�(

ui,h, ui,h
) − λi

= a
(
ui,h − ui , ui,h − ui

)
(
ui,h, ui,h

) −

∥∥∥D 1
2 ∇ui,h − D

1
2 Ghui,h

∥∥∥2
0,�(

ui,h, ui,h
) − λi

(
ui,h − ui , ui,h − ui

)
(
ui,h, ui,h

)

=
(
D

1
2
(
ui,h − ui

)
,D

1
2
(
ui,h − ui

))
(
ui,h, ui,h

) −

∥∥∥D 1
2 ∇ui,h − D

1
2 Ghui,h

∥∥∥2
0,�(

ui,h, ui,h
)
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+
(
c
(
ui,h − ui

)
, ui,h − ui

) − λi
(
ui,h − ui , ui,h − ui

)
(
ui,h, ui,h

)

=

∥∥∥D 1
2 ∇Ghui,h − D

1
2 ∇ui

∥∥∥2
0,�(

ui,h, ui,h
) +

2
(
D

1
2 Ghui,h − D

1
2 ∇ui ,D

1
2 ∇ui,h − D

1
2 Ghui,h

)
(
ui,h, ui,h

)

+
(
c
(
ui,h − ui

)
, ui,h − ui

) − λi
(
ui,h − ui , ui,h − ui

)
(
ui,h, ui,h

) .

From Theorem 4.1 in [43], we know that ‖ui,h − ui‖0,� � (H4 + h2) and hence the last
term in the above equation is bounded by O((H4 + h2)2). Theorem 3.2 implies that the first
term is also bounded by O((H4 + h2)2). Using the Hölder inequality, we obtain∣∣∣(D 1

2 Ghu
i,h − D

1
2 ∇ui ,D

1
2 ∇ui,h − D

1
2 Ghu

i,h
)∣∣∣

≤
∥∥∥D 1

2 Ghu
i,h − D

1
2 ∇ui

∥∥∥
0,�

∥∥∥D 1
2 ∇ui,h − D

1
2 Ghu

i,h)

∥∥∥
0,�

�
(
H4 + h2

) (
H2 + h

)
� H6 + h3 (3.10)

and hence
|λi,h − λi | � H6 + h3.

This completes our proof. ��
Taking H = O(

√
h), Theorems 3.2 and 3.4 imply thatwe can getO(h2) superconvergence

and O(h3) superconvergence for eigenfunction and eigenvalue approximation, respectively.

Remark 3.1 Using the Hölder inequality to estimate (3.10) does not take into account the
cancellation in the integral. Similar as [34], numerical experiments show that the actual bound
is ∣∣∣(D 1

2 Ghu
i,h − D

1
2 ∇ui ,D

1
2 ∇ui,h − D

1
2 Ghu

i,h
)∣∣∣ �

(
H4 + h2

)2
,

which indicates that we have “double”-order gain by applying recovery.

Remark 3.2 Algorithm 1 is a combination of the shifted inverse power two-grid method
[22,43] and gradient recovery enhancement [34]. It inherits all excellent properties of both
methods: low computational cost and superconvergence. We will demonstrate in our numer-
ical tests that Algorithm 1 outperform shifted inverse power two-grid method in [22,43].

Remark 3.3 If we first use classical two-grid methods as in [42] and then apply gradient

recovery, we can prove ‖D 1
2 Ghui,h −D

1
2 ∇ui‖0,� � (H2 + h2) and |λi,h − λi | � H3 + h3.

It means we can only get optimal convergence rate instead of superconvergent convergence
rate when H = O(

√
h).

3.2 Higher Order Space Based Superconvergent Two-Grid Scheme

Our second scheme can be viewed as a combination of the two-grid scheme proposed by Hu
and Cheng [22] or Yang and Bi [43] and the two-space method introduced by Racheva and
Andreev [36].

Note that we use linear finite element space SH
0 on coarse grid TH and quadratic finite

element space Sh,2
0 on fine grid Th . Compared with the two-grid scheme [22,43], the main
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Algorithm 2

1. Solve an eigenvalue problem on a coarse grid TH : Find (λi,H , ui,H ) ∈ R × SH0 and ‖ui,H ‖a = 1
satisfying

a(ui,H , vH ) = λi,H (ui,H , vH ), ∀vH ∈ SH0 . (3.11)

2. Solve a source problem on the fine grid Th : Find ui,h ∈ Sh,2
0 such that

a
(
ui,h , vh

)
− λi,H

(
ui,h , vh

)
= (

ui,H , vh
)
, ∀vh ∈ Sh,2

0 . (3.12)

3. Compute the Rayleigh quotient

λi,h =
a

(
ui,h , ui,h

)
(
ui,h , ui,h

) . (3.13)

difference is that Algorithm 2 uses linear element on coarse grid TH and quadratic element on
fine grid Th while the two-grid uses linear element on both coarse grid TH and Th . Compared
with the two-space method [36], the main difference is that Algorithm 2 uses a coarse grid
TH and a fine grid Th whereas the two-space method only uses a grid Th . Algorithm 2 shares
the advantages of both methods: low computational cost and high accuracy. Thus, we would
expect Algorithm 2 performs much better than both methods.

For Algorithm 2, we have the following Theorem:

Theorem 3.5 Suppose that M(λi ) ⊂ H1
0 (�) ∩ H3(�). Let (λi,h, ui,h) be an approximate

eigenpair of (2.2) by Algorithm 1 and let H be properly small. Then there exists ui ∈ M(λi )

such that ∣∣∣ui,h − ui
∣∣∣
a,�

�
(
H4 + h2

); (3.14)

λi,h − λi �
(
H8 + h4

)
. (3.15)

Proof By Theorem 4.1 in [43], we have∣∣∣ui,h − ui
∣∣∣
a,�

� ηa(H)δ3H (λi ) + δh (λi ); (3.16)

and
λi,h − λi � η2a(H)δ6H (λi ) + δ2h(λi ). (3.17)

Since we use linear element on TH and quadratic element on Th , it follows from the interpo-
lation error estimate [8,12] that

ηa(H) � H, δH (λi ) � H, δh(λi ) � h2.

Substituting the above three estimate into (3.16) and (3.17), we get (3.14) and (3.15). ��
Comparing Algorithms 1 with 2, the main difference is that Algorithm 1 solves a source

problem on fine grid Th using linear element and then performs gradient recoverywhile Algo-
rithm 2 solves a source problem on fine grid Th using quadratic element. Both Algorithms
1 and 2 lead to O(h2) superconvergence for eigenfunction approximation and O(h4) ultra-
convergence for eigenvalue approximation by taking H = O(

√
h). The message we would

like to deliver here is that polynomial preserving recovery plays a similar role as quadratic
element, but with much lower computational cost.
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Remark 3.4 In order to get higher order convergence, we require higher regularity, such as
M(λi ) ⊂ H1

0 (�)∩W 3,∞(�) for Algorithm 1 and M(λi ) ⊂ H1
0 (�)∩ H3(�) for Algorithm

2, in the proof. However, we can use Algorithms 1 and 2 to improve approximation accuracy
even with low regularity.

Algorithm 3 Given a tolerance ε > 0 and a parameter 0 ≤ θ < 1.
1. Generate an initial mesh Th0 .
2. Solve (2.3) on Th0 to get a discrete eigenpair (λ̄h0 , uh0 ).
3. Set � = 0.
4. Compute η(uh� , T ) and η(uh� , �), then let

λh� = λ̄h� − η(uh� , �)2.

5. If η(uh� , �)2 < ε, stop; else go to 6.
6. Choose a minimal subset of elements T̂h�

⊂ Th�
such that

∑
T∈T̂h�

η2(uh , T ) ≥ θη2(uh , �);

then refine the elements in T̂h�
and necessary elements to get a new conforming mesh Th�+1 .

7. Find u ∈ S
h�+1
0 such that

a(u, v) = λh�

(
uh� , v

)
, v ∈ S

h�+1
0 ,

and set uh�+1 = u
‖u‖0,� . Define

λ̄h�+1 =
a

(
uh�+1 , uh�+1

)

b
(
uh�+1 , uh�+1

) . (4.1)

8. Let � = � + 1 and go to 4.

4 Multilevel Adaptive Methods

In this section, we incorporate two-grid methods and gradient recovery enhancing technique
into the framework of adaptive finite element method and propose two multilevel adaptive
methods. Both methods only need to solve an eigenvalue problem on initial mesh and solve
an associated boundary value problem on adaptive refined mesh during every iteration.

Let uh be a finite element solution in Sh and Gh be PPR recovery operator. Define a local
a posteriori error estimator on the element T as

η(uh, T ) =
∥∥∥D 1

2 Ghuh − D
1
2 ∇uh

∥∥∥
0,T

, (4.3)

and a global error estimator as

η(uh,�) =
⎛
⎝ ∑

T∈Th

η(uh, T )

⎞
⎠

1
2

. (4.4)
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Algorithm 4 Given a tolerance ε > 0 and a parameter 0 ≤ θ < 1.
1. Generate an initial mesh Th0 .
2. Solve (2.3) on Th0 to get a discrete eigenpair (λ̄h0 , uh0 ).
3. Set � = 0.
4. Compute η(uh� , T ) and η(uh� , �), then let

λh� = λ̄h� − η(uh� , �)2.

5. If η(uh� , �)2 < ε, stop; else go to 6.
6. Choose a minimal subset of elements T̂h�

⊂ Th�
such that

∑
T∈T̂h�

η2(uh , T ) ≥ θη2(uh , �);

then refine the elements in T̂h�
and necessary elements to get a new conforming mesh Th�+1 .

7. Find u ∈ S
h�+1
0 such that

a(u, v) − λh�
(u, v) =

(
uh� , v

)
, v ∈ S

h�+1
0 , (4.2)

and set uh�+1 = u
‖u‖0,� . Define

λ̄h�+1 =
a

(
uh�+1 , uh�+1

)

b
(
uh�+1 , uh�+1

) .

8. Let � = � + 1 and go to 4.

Given a tolerance ε and a parameter θ , we describe our multilevel adaptive methods in
Algorithms 3 and 4. Here we use Dörfler marking strategy [13] in step 6.

Note that the only difference between Algorithms 3 and 4 is that they solve different
boundary value problems in step 7. Algorithm 3 solves boundary value problem (4.1) like
two-grid scheme in [42] while Algorithm 4 solves boundary value problem (4.2) similar to
two-grid scheme in [22,43]. Boundary value problem (4.2)would lead to a near singular linear
system. Numerical results of both methods are almost the same as indicated by examples in
the next section.

Compared with methods in [24,41], Algorithms 3 and 4 use recovery based a posteriori
error estimator. The propose of gradient recovery in the above two algorithms is twofold.
The first one is to provide an asymptotically exact a posteriori error estimator. The other
is to greatly improve the accuracy of eigenvalue and eigenfunction approximations. Super-
convergence result O(N−1) and ultraconvergence O(N−2) are numerically observed for
eigenfunction and eigenvalue approximation respectively. However, methods in [24,41] can
only numerically give asymptotically optimal results. We want to emphasize that the new
algorithms can get superconvergence or ultraconvergence results with no more or even less
computational cost compared to the methods proposed in [24,41].

5 Numerical Experiment

In this section, we present several numerical examples to demonstrate the effectiveness and
superconconvergence of the proposed algorithms and verify our theoretical results. All algo-
rithms are implemented using finite element package iFEM developed by Chen [10].
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Fig. 1 Uniform mesh for Example 1

Table 1 Eigenpair errors of Algorithm 1 for Example 1 on Uniform Mesh

i H h λi,A1 − λi Order ‖Ghu
i,A1 − ∇ui‖0,� Order

1 4 16 −5.40e−03 – 7.059395e−02 –

1 8 64 −2.19e−05 3.97 4.387700e−03 2.00

1 16 256 −8.59e−08 4.00 2.734342e−04 2.00

1 32 1024 −3.36e−10 4.00 1.707544e−05 2.00

2 4 16 −3.65e−02 – 2.383387e−01 –

2 8 64 −1.24e−04 4.10 1.619009e−02 1.94

2 16 256 −4.40e−07 4.07 1.072544e−03 1.96

2 32 1024 −1.66e−09 4.02 6.819323e−05 1.99

3 4 16 −3.63e−02 – 4.414434e−01 –

3 8 64 −2.19e−04 3.69 2.707125e−02 2.01

3 16 256 −8.23e−07 4.03 1.697971e−03 2.00

3 32 1024 −3.15e−09 4.01 1.063125e−04 2.00

The first example is designed to demonstrate superconvergence property of Algorithm 1
and 2 and make some comparison with the two-grid scheme in [22,43]. Let the i th eigenpairs
obtained by Algorithms 1 and 2 be denoted by (λi,A1, ui,A1) and (λi,A2, ui,A2). Also, let
(λi,TG, ui,TG) be the i th eigenpair produced by the shift inverse based two-grid scheme in
[22,43].

The presentation of other examples are to illustrate the effectiveness and superconvergence
of Algorithm 3 and 4. In these examples, we focus on the first eigenpair. Let λ̄A3 and λA3
be the eigenvalue generated by Algorithm 3 without and with gradient recovery enhancing,
respectively. Define λ̄A4, λA4, uA3, and uA4 in a similar way.
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Table 2 Eigenpair errors of Algorithm 2 for Example 1 on Uniform Mesh

i H h λi,A2 − λi Order ‖∇ui,A2 − ∇ui‖0,� Order

1 4 16 9.32e−04 – 3.344371e−02 –

1 8 64 3.56e−06 4.02 2.076378e−03 2.00

1 16 256 1.41e−08 3.99 1.308168e−04 1.99

1 32 1024 5.52e−11 4.00 8.198527e−06 2.00

2 4 16 5.11e−02 – 2.766129e−01 –

2 8 64 1.95e−04 4.02 1.741376e−02 1.99

2 16 256 8.22e−07 3.95 1.133600e−03 1.97

2 32 1024 3.29e−09 3.98 7.181289e−05 1.99

3 4 16 2.26e−01 – 5.777043e−01 –

3 8 64 5.38e−04 4.36 2.888882e−02 2.16

3 16 256 2.04e−06 4.02 1.789339e−03 2.01

3 32 1024 7.97e−09 4.00 1.119668e−04 2.00

Table 3 Eigenpair errors of shift-inverse Two-grid scheme for Example 1 on Uniform Mesh

i H h λi,TG − λi Order ‖∇ui,TG − ∇ui‖0,� Order

1 4 16 1.91e−01 – 4.374696e−01 –

1 8 64 1.19e−02 2.00 1.090666e−01 1.00

1 16 256 7.43e−04 2.00 2.726154e−02 1.00

1 32 1024 4.64e−05 2.00 6.815303e−03 1.00

2 4 16 8.51e−01 – 9.264564e−01 –

2 8 64 5.13e−02 2.03 2.265764e−01 1.02

2 16 256 3.20e−03 2.00 5.653313e−02 1.00

2 32 1024 2.00e−04 2.00 1.413126e−02 1.00

3 4 16 1.43e+00 – 1.212868e+00 –

3 8 64 8.02e−02 2.08 2.834861e−01 1.05

3 16 256 4.98e−03 2.00 7.058802e−02 1.00

3 32 1024 3.11e−04 2.00 1.764238e−02 1.00

Example 1 Consider the following Laplace eigenvalue problem
{−u = λu, in �,

u = 0, on ∂�; (5.1)

where � = (0, 1) × (0, 1). The eigenvalue of (5.1) are λk,l = (k2 + l2)π2 and the corre-
sponding eigenfunctions are uk,l = sin(kπ) sin(lπ) with k, l = 1, 2, · · · . It is easy to see the
first three eigenvalues are λ1 = 2π2 and λ2 = λ3 = 5π2.

First, uniform mesh as in Fig. 1 is considered. The fine meshes Th are of sizes h = 2− j

( j = 4, 6, 8, 10) and the corresponding coarse meshes TH of size H = √
h. Table 1 lists

the numerical results for Algorithm 1. ‖Ghui,A1 − ∇ui‖0,� (i = 1, 2, 3) superconverges at
rate of O(h2) which consists with our theoretical analysis. However, |λi,A1 − λi | (i = 1, 2,
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Table 4 Comparison of three Algorithms for Example 1 on Uniform mesh

i H h λi,A1 − λi λi,A2 − λi λi,TG − λi

1 1/2 1/16 3.69e−01 4.69e−01 6.11e−01

1 1/4 1/256 6.41e−04 6.50e−04 1.39e−03

Table 5 Eigenpair errors of Algorithm 1 for Example 1 on Delaunay Mesh

i NH Nh λi,A1 − λi Order ‖Ghu
i,A1 − ∇ui‖0,� Order

1 31 385 −3.56e−03 – 5.338236e−02 –

1 105 5761 −1.06e−05 2.15 2.835582e−03 1.08

1 385 90625 −3.69e−08 2.05 1.686396e−04 1.02

1 1473 1443841 −1.37e−10 2.02 1.049196e−05 1.00

2 31 385 −4.05e−02 – 1.913200e−01 –

2 105 5761 −1.33e−04 2.11 1.078447e−02 1.06

2 385 90625 −4.80e−07 2.04 6.507215e−04 1.02

2 1473 1443841 −1.82e−09 2.01 4.050826e−05 1.00

3 31 385 −4.69e−02 – 2.021704e−01 –

3 105 5761 −1.66e−04 2.09 1.167256e−02 1.05

3 385 90625 −6.12e−07 2.03 7.128723e−04 1.01

3 1473 1443841 −2.33e−09 2.01 4.459081e−05 1.00

Table 6 Eigenpair errors of Algorithm 2 for Example 1 on Delaunay Mesh

i NH Nh λi,A2 − λi Order ‖∇ui,A2 − ∇ui‖0,� Order

1 31 385 8.49e−05 – 9.258930e−03 –

1 105 5761 3.23e−07 2.06 5.705799e−04 1.03

1 385 90625 1.26e−09 2.01 3.555028e−05 1.01

1 1473 1443841 5.14e−12 1.99 2.220103e−06 1.00

2 31 385 2.63e−03 – 5.673797e−02 –

2 105 5761 7.13e−06 2.18 2.973429e−03 1.09

2 385 90625 2.59e−08 2.04 1.785969e−04 1.02

2 1473 1443841 9.66e−11 2.02 1.104344e−05 1.01

3 31 385 3.55e−03 – 6.475644e−02 –

3 105 5761 7.73e−06 2.27 2.963878e−03 1.14

3 385 90625 2.78e−08 2.04 1.776282e−04 1.02

3 1473 1443841 1.05e−10 2.01 1.100772e−05 1.00

3) ultraconverges at rate of O(h4) which is better than the results predicted by Theorem
3.4. In particular, it verifies the statement in Remark 3.1. One important thing we want to
point out is that we numerically observe that λA1 obtained by Algorithm 1 approximates the
exact eigenvalue from below; see column 3 in Table 1. Similar phenomenon was observed in
[15] where they use a local high-order interpolation recovery. We want to remark that lower
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Table 7 Eigenpair errors of shift-inverse Two-grid scheme for Example 1 on Delaunay Mesh

i NH Nh λi,TG − λi Order ‖∇ui,TG − ∇ui‖0,� Order

1 31 385 8.20e−02 – 2.865548e−01 –

1 105 5761 5.13e−03 1.02 7.159847e−02 0.51

1 385 90625 3.20e−04 1.01 1.789928e−02 0.50

1 1473 1443841 2.00e−05 1.00 4.474820e−03 0.50

2 31 385 4.80e−01 – 6.940436e−01 –

2 105 5761 2.99e−02 1.03 1.730144e−01 0.51

2 385 90625 1.87e−03 1.01 4.324668e−02 0.50

2 1473 1443841 1.17e−04 1.00 1.081155e−02 0.50

3 31 385 5.45e−01 – 7.396147e−01 –

3 105 5761 3.39e−02 1.03 1.842669e−01 0.51

3 385 90625 2.12e−03 1.01 4.606308e−02 0.50

3 1473 1443841 1.33e−04 1.00 1.151577e−02 0.50
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Fig. 2 Delaunay mesh for Example 1

bound of eigenvalue is very important in practice and there are many efforts are made to
obtain eigenvalue approximation from below. The readers are referred to [3,26,44,46] for
other ways to approximate eigenvalue from below. In Table 2, we report the numerical result
of Algorithm 2. As expected, O(h4) convergence of eigenvalue approximation and O(h2)
convergence of eigenfunction approximation are observed which validate our Theorem 3.5.
The shift-inverse power method based two-grid scheme in [22,43] is then considered, the
result being displayed in Table 3. λi,TG approximates λi (i = 1, 2, 3) at a rate O(h2) and
‖ui,TG − ui‖a,� (i=1, 2, 3) converges at a rate of O(h).

Comparing Tables 1 and 2 to 3, huge advantages of Algorithms 1 and 2 are demonstrated.
For instance, on the fine grid with size h = 1/1024 and corresponding coarse grid with size
H = 1/32, the approximate first eigenvalues produced by Algorithms 1 and 2 are exact up
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Fig. 3 Initial mesh for Example 2
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Fig. 4 Adaptive mesh for Example 2

to 10 digits while one can only trust the first five digits of the first eigenvalue generated by
the two-grid scheme in [22,43].

Then we consider the case H = O(
4
√
h) for the first eigenvalue. We use the fine meshes of

mesh size h = 2− j with j = 4, 8 and corresponding coarse meshes satisfying H = 4
√
h. The

numerical results are showed in Table 4. We can see that the two proposed Algorithms give
better approximate eigenvalues. Thus Algorithms 1 and 2 outperform the two-grid scheme
even in the case H = 4

√
h. One interesting thing that we want to mention is that λi,A1

approximates λi from above in this case, see column 4 in Table 4.
Now, we turn to unstructured meshes. First we generate a coarse mesh TH and repeat

regular refinement on TH until H = O(
√
h) to get the corresponding fine mesh Th . The first

level coarse mesh as in Fig. 2 is generated by EasyMesh [35] and the other three level coarse
mesh as in Fig. 2 are generated by regular refinement. The numerical results are provided in
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Fig. 5 Eigenvalue approximation error for Example 2
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Fig. 6 Effective index of Algorithm 3 for Example 2

Tables 5, 6 and 7. Note that NH and Nh denote the number of vertices on coarse mesh TH
and fine mesh Th , respectively. Concerning the convergence of eigenvalue, Algorithms 1 and
2 ultraconverge at rate O(h4) while the two-grid scheme converges at rate O(h2). Note that
in Tables 5, 6 and 7, NH ≈ H−2 and Nh ≈ h−2. Therefore, convergent rates for H and h
“double” the rates for NH and Nh , respectively. As for eigenfunction, ‖Ghui,A1 − ∇ui‖0,�
and ‖∇ui,A2 − ∇ui‖0,� are about O(h2) while ‖∇ui,TG − ∇ui‖0,� ≈ O(h) (Fig. 2).

Example 2 In the previous example, the eigenfunctions u are analytic. Here we consider
Laplace eigenvalue value problem on the L-shaped domain � = (−1, 1) × (−1, 1)/[0, 1) ×
(−1, 0]. The first eigenfunction has a singularity at the origin. To capture this singularity,
multilevel adaptive Algorithms 3 and 4 are used with θ = 0.4. Since the first exact eigenvalue
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Fig. 7 Effective index of Algorithm 4 for Example 2
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Fig. 8 Initial mesh for Example 3

is not available, we choose an approximation λ = 9.6397238440219 obtained by Betcke and
Trefethen in [7], which is correct up to 14 digits.

Figure 3 shows the initial uniformmeshwhile Fig. 4 is themesh after 18 adaptive iterations.
Figure 5 reports numerical results of the first eigenvalue approximation. It indicates clearly
λ̄A3 and λ̄A4 approximate λ at a rate of O(N−1) while λA3 and λA4 approximate λ at a rate
of O(N−2). The numerical results for Algorithms 3 and 4 are almost the same.

In the context of adaptive finite element method for boundary value problems, the effectiv-
ity index κ is used to measure the quality of an error estimator [2,4]. For eigenvalue problem,
it is better to consider eigenvalue effectivity index instead of traditional effectivity index in
[2,4]. In the article, we consider a similar eigenvalue effective index as in [19]
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Fig. 9 Adaptive mesh for Example 3

Fig. 10 Eigenvalue approximatio error for Example 3

κ =

∥∥∥D 1
2 Ghuh − D

1
2 ∇uh

∥∥∥2
0,�

|λ − λh | , (5.2)

where uh is either uA3 or uA4 and λh is either λA3 or λA4. The effectivity index for the two
proposedmultilevel adaptive algorithms are reported in Figs. 6 and 7.We see that κ converges
to 1 quickly after the first few iterations, which indicates that the posteriori error estimator
(4.3) or (4.4) is asymptotically exact.

Example 3 Consider the following harmonic oscillator equation [18], which is a simple
model in quantum mechanics,
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Fig. 11 Eigenfunction approximation error for Example 3

Fig. 12 Effective index of Algorithm 3 for Example 3

− 1

2
u + 1

2
|x |2u = λu, in R

2, (5.3)

where |x | = √|x1|2 + |x2|2. The first eigenvalue of (5.3) is λ = 1 and the corresponding
eigenfunction is u = γ e−|x |2/2 with any nonzero constant γ .

We solve this eigenvalue problemwith� = (−5, 5)×(−5, 5) and zero boundary condition
as in [41]. The initial mesh is shown in Fig. 8 and the adaptive mesh after 20 iterations is
displayed in Fig. 9. The parameter θ is chosen as 0.4. Numerical results are presented in
Figs. 10 and 11. For eigenvalue approximation, O(N−1) convergence rate is observed for
|λ̄A3 − λ| while O(N−2) ultraconvergence rate is observed for |λA3 − λ|. For eigenfunction
approximation, ‖D 1

2 ∇uA3 − D
1
2 ∇u‖0,� ≈ O(N−0.5) and ‖D 1

2 GhuA3 − D
1
2 ∇u‖0,� ≈

O(N−1). The numerical result of Algorithm 4 is similar.
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Fig. 13 Effective index of Algorithm 4 for Example 3

Figures 12 and 13 graph the eigenvalue effectivity index for the two proposed multilevel
adaptive algorithms. It also indicates that the posteriori error estimator (4.3) or (4.4) is
asymptotically exact for problem (5.3).

6 Conclusion

When eigenfunctions are relatively smooth, two-space methods (using higher-order elements
in the second stage) is superior to two-grid methods (using the same element at finer grids in
the second stage). They have the comparable accuracy. However, at the last stage, the degrees
of freedom of the two-space method is much smaller than that of the two-grid method.

For linear element on structured meshes, using gradient recovery at the last stage achieves
similar accuracy as the quadratic element on the same mesh. Therefore, with much reduced
cost, the gradient recovery is comparable with the two-stage method on the same mesh.

Algorithms 3 and 4 use recovery type error estimators to adapt the mesh, and have two
advantages comparing with the residual based adaptive algorithms. (1) Cost effective. In fact,
the recovery based error estimator plays two roles: one is to measure the error, and another
is to enhance the eigenvalue approximation. (2) Higher accuracy. Indeed, after recovery
enhancement, the approximation error is further reduced.
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