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HESSIAN RECOVERY FOR FINITE ELEMENT METHODS

HAILONG GUO, ZHIMIN ZHANG, AND REN ZHAO

Abstract. In this article, we propose and analyze an effective Hessian re-
covery strategy for the Lagrangian finite element method of arbitrary order.
We prove that the proposed Hessian recovery method preserves polynomials
of degree k + 1 on general unstructured meshes and superconverges at a rate
of O(hk) on mildly structured meshes. In addition, the method is proved to
be ultraconvergent (two orders higher) for the translation invariant finite el-
ement space of any order. Numerical examples are presented to support our
theoretical results.

1. Introduction

Post-processing is an important technique in scientific computing, where it is
necessary to draw some useful information that have physical meanings such as
velocity, flux, stress, etc., from the primary results of the computation. These
quantities of interest usually involve derivatives of the primary data. Some popular
post-processing techniques include the celebrated Zienkiewicz-Zhu superconvergent
patch recovery (SPR) [28], polynomial preserving recovery (PPR) [16,27], and edge
based recovery [21], which were proposed to obtain accurate gradients with reason-
able cost. Similarly, post-processing for second order derivatives, which are related
to physical quantities such as momentum and Hessian, are also desirable. The
Hessian matrix is particularly significant in adaptive mesh design, since it can in-
dicate the direction where the function changes the most and guide us to construct
anisotropic meshes to cope with the anisotropic properties of the solution of the
underlying partial differential equation [3, 5]. It also plays an important role in
finite element approximation of second order nonvariational elliptic problems [13],
numerical solution of some fully nonlinear equations such as the Monge-Ampère
equation [14, 18], and designing a nonlocal finite element technique [8].

There have been some works in literature on this subject. In 1998, Lakhany-
Whiteman used a simple averaging twice at edge centers of the regular uniform
triangular mesh to produce a superconvergent Hessian [12]. Later, some other
researchers such as Agouzal et al. [1], Ovall [20] , and Aguilera et al. [2] also studied
Hessian recovery. Comparison studies of existing Hessian recovery techniques are
found in Vallet et al. [23] and Picasso et al. [22]. However, there is no systematic
theory that guarantees convergence of recovered Hessian in general circumstances.
Moreover, there are certain technical difficulties in obtaining rigorous convergence
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proof for meshes other than the regular pattern triangular mesh. In a very recent
work, Kamenski-Huang argued that it is not necessary to have very accurate or
even convergent Hessian in order to obtain a good mesh [11].

Our current work is not targeted in the direction of adaptive mesh refinement; in-
stead, our emphasis is to obtain accurate Hessian matrices via recovery techniques.
We propose an effective Hessian recovery method and establish a solid theoretical
analysis for such recovery methods. Our approach is to apply PPR twice to the
primarily computed data. This idea is natural. However, the mathematical theory
behind it is nontrivial and quite involved, especially in the ultraconvergence anal-
ysis of the recovered Hessian. A direct calculation of the gradient from the linear
finite element space has linear convergent rate and the Hessian has no convergence
at all. Our Hessian recovery method can achieve second order convergence under
some uniform meshes, which is a very surprising result! In particular, the proposed
method is the only one of all Hessian recovery methods that is ultraconvergent on
the Chevron pattern uniform mesh.

The rest of the paper is organized as follows. We begin in Section 2 with an intro-
duction of some notation and definition of polynomial preserving recovery. Then,
in Section 3, we define the Hessian recovery operator and use two examples to show
how it relates to the finite difference operator. Also, in this section, we analyze the
consistence of the Hessian recovery operator by proving its polynomial preserving
property. In Section 4, we prove superconvergence of our Hessian recovery operator
on mildly unstructured mesh and ultraconvergence on translation invariant mesh.
Section 5 is devoted to numerical comparison of the proposed Hessian recovery
method with some popular Hessian recovery methods in the literature and illus-
tration of our theoretical results. Finally, some conclusions are drawn in Section
6.

Throughout this article, the letter C or c, with or without subscript, denotes
a generic constant which is independent of h and may not be the same at each
occurrence. For convenience, we denote x ≤ Cy by x � y.

2. Preliminaries

In this section, we first introduce some notation and then briefly describe the
polynomial preserving recovery (PPR) operator [16, 27], which is a basis of our
Hessian recovery method.

2.1. Notation. Let Ω be a bounded polygonal domain with Lipschitz boundary
∂Ω in R

2. Throughout this article, the standard notation for Sobolev spaces and
their associate norms are adopted as in [4,6]. A 2-index α is a pair of nonnegative
integers αi, i = 1, 2. The length of α is given by

|α| =

2∑
i=1

αi.

We adopt the same notation for derivatives as in the textbook by Evans [7]. We

usually write ux (or uy) for weak derivative ∂u
∂x (or ∂u

∂y ). Similarly, ∂2u
∂x∂y = uxy,

∂3u
∂x2∂y = uxxy, etc. Given a 2-index α, define

Dαu :=
∂|α|u

∂xα1∂yα2
.

Licensed to Univ of Calif, Santa Barbara. Prepared on Tue Oct 10 19:24:06 EDT 2017 for download from IP 169.231.151.111.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HESSIAN RECOVERY FOR FINITE ELEMENT METHODS 1673

Given any nonnegative integer k, Dku is the tensor of all partial derivatives of
order k. The Hessian operator H is denoted by

(2.1) H =

(
∂2

∂x2
∂2

∂x∂y
∂2

∂y∂x
∂2

∂y2

)
.

For a subdomain A of Ω, let Pm(A) be the space of polynomials of degree less
than or equal to m over A and let nm be the dimension of Pm(A) with nm =
1
2 (m + 1)(m + 2). W k

p (A) denotes the Sobolev space with norm ‖ · ‖k,p,A and

seminorm | · |k,p,A. When p = 2, we denote simply Hk(A) = W k
2 (A) and the

subscript p is omitted.
For any 0 < h < 1

2 , let Th be a shape regular triangulation of Ω̄ with mesh size
at most h, i.e.,

Ω̄ =
⋃

K∈Th

K,

where K is a triangle. For any k ∈ N, define the continuous finite element space
Sh of order k as

Sh = {v ∈ C(Ω̄) : v|K ∈ Pk(K), ∀K ∈ Th} ⊂ H1(Ω).

Let Nh denote the set of mesh nodes. The standard Lagrange basis of Sh is denoted
by {φz : z ∈ Nh} with φz(z

′) = δzz′ for all z, z′ ∈ Nh. For any v ∈ H1(Ω) ∩ C(Ω),
let vI be the interpolation of v in Sh, i.e., vI =

∑
z∈Nh

v(z)φz.

For any vertex z and n ∈ Z
+, let L(z, n) denote the union of mesh elements in

the first n layers around z, i.e.,

(2.2) L(z, n) :=
⋃

{τ : τ ∈ Th, τ ∩ L(z, n− 1) �= ∅} ,

where L(z, 0) := {z}.
For A ⊂ Ω, let Sh(A) denote the restrictions of functions in Sh to A and let

Scomp
h (A) denote the set of those functions in Sh(A) with compact support in the

interior of A [24]. Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω be separated by d ≥ coh and � be a
direction, i.e., a unit vector in R

2. Let τ be a parameter, which will typically be a
multiple of h. Let T �

τ denote translation by τ in the direction �, i.e.,

(2.3) T �
τ v(x) = v(x + τ�),

and for an integer ν,

(2.4) T �
ντv(x) = v(x + ντ�).

Following the definition of [24], the finite element space Sh is called translation
invariant by τ in the direction � if

(2.5) T �
ντv ∈ Scomp

h (Ω), ∀v ∈ Scomp
h (Ω1),

for some integer ν with |ν| < M . Equivalently, Th is called a translation invariant
mesh. To clarify the matter, we consider five popular triangular mesh patterns:
Regular, Chevron, Criss-cross, Union-Jack, and Equilateral patterns, as shown in
Figure 1.

We see that:
1) Regular pattern is translation invariant by h in directions (1, 0) and (0, 1), by

2
√

2h in directions (±
√
2
2 ,

√
2
2 ), and by

√
5h in directions ( 2

√
5

5 ,±
√
5
5 ) and (±

√
5
5 , 2

√
5

5 ),
etc.
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Figure 1. Five types of uniform meshes: (a) Regular pattern; (b)
Chevron pattern; (c) Criss-cross pattern; (d) Union-Jack pattern;
(e) Equilateral pattern

2) Chevron pattern is translation invariant by h in the direction (0, 1), by 2h in

the direction (1, 0), and by 2
√

2h in directions (±
√
2
2 ,

√
2
2 ), and by

√
5h in directions

(±
√
5
5 , 2

√
5

5 ), etc.

3) Criss-cross pattern is translation invariant by
√

2h in directions (1, 0) and

(0, 1), and by 2h in directions (±
√
2
2 ,

√
2
2 ), etc.

4) Union-Jack pattern is translation invariant by 2h in directions (1, 0) and (0, 1),

and by 2
√

2h in directions (±
√
2
2 ,

√
2
2 ), etc.

5) Equilateral pattern is translation invariant by h in directions (1, 0) and

(± 1
2 ,

√
3
2 ), and by

√
3h in directions (0, 1) and (

√
3
2 ,± 1

2 ), etc.

2.2. Polynomial preserving recovery. Let us introduce Gh : Sh → Sh ×Sh the
PPR gradient recovery operator. For any function uh ∈ Sh, Ghuh is a function
in Sh × Sh which is uniquely determined by its values at nodes. If the values
{(Ghuh)(z) : z ∈ Nh} are well defined, then define Ghuh on the whole domain by

Ghuh :=
∑
z∈Nh

(Ghuh)(z)φz.

When z is a vertex, let Kz be a patch of elements around z. Select all nodes in
Nh∩Kz as sampling points and fit a polynomial pz ∈ Pk+1(Kz) in the least squares
sense at those sampling points, i.e.,

(2.6) pz = arg min
p∈Pk+1(Kz)

∑
z̃∈Nh∩Kz

(uh − p)2(z̃).

Then the recovered gradient at z is defined as

(Ghuh)(z) = ∇pz(z).

For the linear element, all nodes in Nh are vertices and hence Ghuh is well defined.
However, Nh may contain edge nodes or interior nodes for higher order elements.
If z is an edge node which lies on an edge between two vertices z1 and z2, we define

(Ghuh)(z) = β∇pz1(z) + (1 − β)∇pz2(z),

where β is determined by the ratio of distances of z to z1 and z2. If z is an interior
node which lies in a triangle formed by three vertices z1, z2, and z3, we define

(Ghuh)(z) =

3∑
j=1

βj∇pzj (z),

where βj is the barycentric coordinate of z.
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To complete the definition of PPR, we need to define Kz. If z is an interior
vertex, Kz is defined as the smallest L(z, n) that guarantees the uniqueness of pz
in (2.6) [16, 27]. In the case that z is a boundary vertex, let n0 be the smallest
positive integer such that L(z, n0) has at least one interior mesh vertex. Then, we
define

Kz = L(z, n0) ∪ {Kz̃ : z̃ ∈ L(z, n0) and z̃ an interior vertex}.

Remark 2.1. In order to avoid numerical instability, a discrete least squares fitting
process is carried out on a reference patch ωz.

3. Hessian recovery method

Given u ∈ Sh, let Ghu ∈ Sh×Sh be the recovered gradient using PPR as defined
in the previous section. We rewrite Ghu as

(3.1) Ghu =

(
Gx

hu
Gy

hu

)
.

In order to recover the Hessian matrix of u, we apply gradient recovery operator
Gh to Gx

hu and Gy
hu one more time, respectively, and define the Hessian recovery

operator Hh as follows:

(3.2) Hhu =
(
Gh(Gx

hu), Gh(Gy
hu)

)
=

(
Gx

h(Gx
hu) Gx

h(Gy
hu)

Gy
h(Gx

hu) Gy
h(Gy

hu)

)
.

Just as PPR, we obtain Hh : Sh → S2
h×S2

h on the whole domain Ω by interpolation
after determining values of Hhu at all nodes in Nh.

Remark 3.1. For the Hessian recovery operator Hh defined in (3.2), we shall prove
that Hh is symmetric when the mesh is translation invariant and all sampling points
are symmetric with respect to the recovered point. In the general case, Hh may not
be symmetric. But we can overcome the asymmetry by symmetrizing the recovered
Hessian matrix, i.e.,

Hh ← (Hh + HT
h )

2
.

This symmetrization process is easily implemented in practical and it certainly
does not compromise the quality of approximation. Since the recovered Hessian
converges to the actual Hessian which is symmetric, the skew-symmetric part of
Hh should be relatively small. For simplicity in theoretical analysis, we still keep
the definition (3.2).

Remark 3.2. The two gradient recovery operators in definition (3.2) of Hh can be
different. Actually, we can define the Hessian recovery operator Hh as

Hhu =
(
G̃h(Gx

hu), G̃h(Gy
hu)

)
.

By choosing Gh and G̃h as PPR or SPR operators, we obtain four different Hessian
recovery operators, i.e., PPR-PPR, PPR-SPR, SPR-PPR, and SPR-SPR. However,
numerical tests have shown that PPR-PPR is the best one. Indeed, PPR-PPR is
the only one that ultraconverges at all of the five different uniform meshes.
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3.1. Illustration. To give the readers some intuition, we shall discuss two exam-
ples in detail. For the sake of simplicity, only linear elements on uniform meshes
will be considered. In practice, the method can be applied to arbitrary meshes and
higher order elements.

Example 1. Consider the regular pattern uniform mesh as in Figure 2. We want
to recover the Hessian matrix at z0. As deduced in [27], the recovered gradient at
z0 is given by

(Ghu)(z0)=
1

6h

((
2
1

)
u1+

(
1
2

)
u2+

(
−1
1

)
u3 +

(
−2
−1

)
u4+

(
−1
−2

)
u5+

(
1
−1

)
u6

)
.

Here ui = u(zi) (i = 0, 1, . . . , 18) represents the function value of u at node zi.
Thus, according to the definition (3.2) of the Hessian recovery operator Hh, we
have (

Hxx
h u

Hxy
h u

)
(z0) =

1

6h
(2(Ghu)(z1) + (Ghu)(z2) − (Ghu)(z3)

−2(Ghu)(z4) − (Ghu)(z5) + (Ghu)(z6))

(3.3)

and (
Hyx

h u
Hyy

h u

)
(z0) =

1

6h
((Ghu)(z1) + 2(Ghu)(z2) + (Ghu)(z3)

−(Ghu)(z4) − 2(Ghu)(z5) − (Ghu)(z6)) ,

(3.4)

where

(Ghu)(z1)=
1

6h

((
2
1

)
u7+

(
1
2

)
u8+

(
−1
1

)
u2+

(
−2
−1

)
u0+

(
−1
−2

)
u18+

(
1
−1

)
u6

)

and (Ghu)(z2), . . . , (Ghu)(z6) follow a similar pattern. Direct calculation reveals
that

(Hxx
h u)(z0)=

1

36h2
(−12u0 + 2u1 − 4u2 − 4u3 + 2u4 − 4u5 − 4u6 + 4u7 + 4u8 + u9

− 2u10 + u11 + 4u12 + 4u13 + 4u14 + u15 − 2u16 + u17 + 4u18),

(Hxy
h u)(z0)=

1

36h2
(6u0 − u1 + 5u2 − u3 − u4 + 5u5 − u6 − 2u7 + u8 + u9

+ u10 − 2u11 − 5u12 − 2u13 + u14 + u15 + u16 − 2u17 − 5u18),

(Hyx
h u)(z0)=

1

36h2
(6u0 − u1 + 5u2 − u3 − u4 + 5u5 − u6 − 2u7 + u8 + u9

+ u10 − 2u11 − 5u12 − 2u13 + u14 + u15 + u16 − 2u17 − 5u18),

(Hyy
h u)(z0)=

1

36h2
(−12u0 − 4u1 − 4u2+2u3 − 4u4 − 4u5 + 2u6 + u7 − 2u8 + u9

+ 4u10 + 4u11 + 4u12+u13−2u14+u15 + 4u16 + 4u17 + 4u18).

It is observed that (Hxy
h u)(z0) = (Hyx

h u)(z0), which means the recovered Hessian
matrix is symmetric, a property of the exact Hessian we would like to maintain.
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Figure 2. Regular pattern
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Figure 3. Chevron pattern

Using Taylor expansion, we can show that

(Hxx
h u)(z0) = uxx(z0) +

h2

3
(uxxxx(z0) + uxxxy(z0) + uxxyy(z0)) + O(h4),

(Hxy
h u)(z0) = uxy(z0) +

h2

3
(uxxxy(z0) + uxxyy(z0) + uxyyy(z0)) + O(h4),

(Hyx
h u)(z0) = uyx(z0) +

h2

3
(uxxxy(z0) + uxxyy(z0) + uxyyy(z0)) + O(h4),

(Hyy
h u)(z0) = uyy(z0) +

h2

3
(uxxyy(z0) + uxyyy(z0) + uyyyy(z0)) + O(h4),

which imply that Hhu provides a second order approximation of Hu at z0.

Example 2. Consider the Chevron pattern uniform mesh as shown in Figure 3.
Repeating the procedure as in Example 1, we derive the recovered Hessian matrix
at z0 as

(Hxx
h u)(z0) =

1

144h2
( − 72u0 + 36u13 + 36u7),

(Hxy
h u)(z0) =

1

144h2
( − 12u1 + 12u3 + 24u4 − 24u6 + 6u7

+ 36u9 − 36u11 − 6u13 + 6u14 − 6u18),

(Hyx
h u)(z0) =

1

144h2
(12u1 − 12u3 + 36u4 − 36u6 − 6u7

+ 6u8 + 24u9 − 24u11 − 6u12 + 6u13),

(Hyy
h u)(z0) =

1

144h2
( − 48u0 − 10u1 − 22u2 − 10u3 − 10u4 + 18u5

− 10u6 − 2u7 + u8 + 10u9 + 36u10 + 10u11 + u12

− 2u13 + u14 + 10u15 + 16u16 + 10u17 + u18).
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In addition, we have the following Taylor expansion:

(Hxx
h u)(z0) = uxx(z0) +

h2

3
uxxxx(z0) +

2h4

45
uxxxxxx(z0) + O(h5),

(Hxy
h u)(z0) = uxy(z0) +

h2

12
(3uxxxy(z0) + 2uxyyy(z0)) −

h3

24
uxxxyy(z0) + O(h4),

(Hyx
h u)(z0) = uyx(z0) +

h2

12
(3uxxxy(z0) + 2uxyyy(z0)) +

h3

24
uxxxyy(z0) + O(h4),

(Hyy
h u)(z0) = uyy(z0) +

h2

6
(uxxyy(z0) + 2uyyyy(z0)) −

5h3

72
uxxyyy(z0) + O(h4).

We conclude that Hhu is a second order approximation to the Hessian matrix. It is
worth mentioning that, though Hxy

h �= Hyx
h for the Chevron pattern uniform mesh,

they are both second order finite difference schemes at z0.

Remark 3.3. PPR-PPR is the only one among the four Hessian recovery methods
mentioned in Remark 3.2 that provides second order approximation for the Chevron
pattern uniform mesh.

Both Examples 1 and 2 indicate that for the linear element the PPR-PPR ap-
proach is equivalent to a finite difference scheme of second order accuracy at vertex
z0.

Remark 3.4. In a general sense, the recovery operator can be viewed as a finite
difference operator on unstructured meshes. The practical usage of recovery oper-
ator is not only to obtain a better approximation and provide an asymptotically
exact a posteriori error estimator, but also to design some new numerical solvers
for PDEs. It provides a systematic way to construct finite difference schemes on
general unstructured meshes. Actually, the Hessian recovery operator defined in
(3.2) can be used to construct finite difference schemes for second order differential
operators on unstructured meshes. We have made some progress in this direction
and will report the results in a separate paper.

3.2. Polynomial preserving property. As we observed in previous subsection,
Hh can be viewed as a finite difference scheme on unstructured meshes. For finite
difference schemes, one of the most important properties is consistency. In this sub-
section, we shall prove the polynomial preserving property of the Hessian recovery
operator Hh which leads to consistency.

For an arbitrary unstructured mesh, we can prove the following polynomial pre-
serving property.

Theorem 3.5. The Hessian recovery operator Hh preserves polynomials of degree
k + 1 for an arbitrary mesh.

Proof. Suppose u is a polynomial of k + 1 on Kz, i.e., u ∈ P(Kz). According to
Theorem 2.1 in [27], Gh preserves polynomials of degree k+1. Then it follows that
Ghu = ∇u which is a polynomial of degree k. Therefore, we have

(3.5) Hhu = (Gh(Gx
hu), Gh(Gy

hu)) = (Gh
∂u

∂x
,Gh

∂u

∂x
) = (∇∂u

∂x
,∇∂u

∂x
) = Hu.

It means that Hh preserves polynomials of degree k + 1 which completes our
proof. �
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If the mesh Th is translation invariant, we have the following improved results.

Theorem 3.6. If z is a node of a translation invariant mesh and a mesh symmetric
center of the involved nodes, then Hh preserves polynomials of degree k + 2 for odd
k, and of degree k + 3 for even k. In addition, Hh is symmetric.

Proof. Since Gh is exact for polynomial of degree k + 1, it follows that

Gx
hu = Dxu + hk+1ax ·Dk+2u + hk+2bx ·Dk+3u + hk+3cx ·Dk+4u + · · · ,(3.6)

Gy
hu = Dyu + hk+1ay ·Dk+2u + hk+2by ·Dk+3u + hk+3cy ·Dk+4u + · · · .(3.7)

Notice that coefficients ax, ay, bx, by, . . . depend only on the coordinates of
nodes, since we recover gradient at nodes only. Thus for translation invariant
meshes, ax, ay, bx, by, . . . are constants. In addition, due to symmetry, it makes
no difference if we perform Gx

h or Gy
h first. Hence,

(Hxy
h u)(z) = (Gy

h(Gx
hu))(z)

=Gy
h[Dxu(z) + hk+1ax ·Dk+2u(z) + hk+2bx ·Dk+3u(z) + · · · ]

=(Gy
h(Dxu))(z) + hk+1(ax ·Gy

h(Dk+2u))(z) + hk+2(bx ·Gy
h(Dk+3u))(z) + · · ·

=(DyDxu)(z) + hk+1(ay ·Dk+2Dxu)(z) + hk+2(by ·Dk+3Dxu)(z)

+ hk+1(ax ·Dy(D
k+2u))(z) + hk+2(bx ·Dy(D

k+3u))(z) + O(hk+3)

=(DyDxu)(z) + hk+1[ay ·Dk+2Dxu + ax ·Dy(D
k+2u)](z)

+ hk+2[by ·Dk+3Dxu + bx ·Dy(D
k+3u)](z) + O(hk+3).

(3.8)

Notice that (3.8) is valid only at nodal points. Similarly,

(Hyx
h u)(z) = (DxDyu)(z) + hk+1[ax ·Dk+2Dyu + ay ·Dx(Dk+2u)](z)

+ hk+2[bx ·Dk+3Dyu + by ·Dx(Dk+3u)](z) + O(hk+3),
(3.9)

(Hxx
h u)(z) = (DxDxu)(z) + hk+1[ax ·Dk+2Dxu + ax ·Dx(Dk+2u)](z)

+ hk+2[bx ·Dk+3Dxu + bx ·Dx(Dk+3u)](z) + O(hk+3),
(3.10)

(Hyy
h u)(z) = (DyDyu)(z) + hk+1[ay ·Dk+2Dyu + ay ·Dy(D

k+2u)](z)

+ hk+2[by ·Dk+3Dyu + by ·Dy(D
k+3u)](z) + O(hk+3).

(3.11)

(3.8)–(3.11) imply that the Hessian recovery operator Hh is exact for polynomials
of degree k+2 for translation invariant meshes. Also, we observe Hxy

h = Hyx
h from

(3.8) and (3.9).
Next we consider even order (k = 2r) elements on translation invariant meshes,

in which case

ax(z) = 0, cx(z) = 0, ay(z) = 0, cy(z) = 0,(3.12)

Dax(z) = 0, Dcx(z) = 0, Day(z) = 0, Dcy(z) = 0,(3.13)

and bx, by, . . . are constants in (3.7). Here the symbol D is understood as taking
all partial derivatives to each entry of the vector. Consequently,

(3.14) (Gy
hu)(z) = (Dyu)(z) + hk+2(by ·Dk+3u)(z) + O(hk+4).
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Also, (3.14) is valid only at nodal points. Plugging (3.6) into (3.14) yields

(Hxy
h u)(z) = (Gy

hG
x
hu)(z)

=(DyG
x
hu)(z) + hk+2(by ·Dk+3Gx

hu)(z) + O(hk+4)

=Dy(Dxu + hk+1ax ·Dk+2u + hk+2bx ·Dk+3u + hk+3cx ·Dk+4u

+ · · · )(z) + hk+2(by ·Dk+3Dxu)(z) + O(hk+4)

=(DyDxu)(z) + hk+2(bx ·DyD
k+3u + by ·Dk+3Dxu)(z) + O(hk+4).

In the last identity we have used (3.12) and (3.13).
The argument for the other three entries of the recovered Hessian matrix are

similar. We conclude that the Hessian recovery operator Hh is exact for polynomials
of degree up to k + 3 when k is even and the mesh is translation invariant and
symmetric with respect to x and y. �

Remark 3.7. It is worth mentioning that, except for the Chevron pattern, (3.8)–
(3.11) are valid for the other four patterns of uniform meshes, since the recovered
gradient Ghu produces the same stencil at each node.

Remark 3.8. According to [23], the best Hessian recovery method in the literature
preserves polynomials of degree 2 for the linear element. Our method preserves
polynomials of degree 2 on general unstructured meshes and preserves polynomials
of degree 3 on translation invariant meshes for the linear element.

Theorem 3.9. Let u ∈ W k+2
∞ (Kz); then

‖Hu−Hhu‖0,∞,Kz
� hk|u|k+2,∞,Kz

.

If z is a node of translation invariant mesh and a mesh symmetric center of the
involved nodes and u ∈ W k+3

∞ (Kz), then

|(Hu−Hhu)(z)| � hk+1|u|k+3,∞,Kz
.

Moreover, if u ∈ W k+4
∞ (Kz) and k is an even number, then

|(Hu−Hhu)(z)| � hk+2|u|k+4,∞,Kz
.

Proof. It follows directly from Theorems 3.5, 3.6, and the Bramble-Hilbert lemma.
�

4. Superconvergence analysis

In this section, we first use the supercloseness between the gradient of the finite
element solution uh and the gradient of the interpolation uI [3, 5, 9, 10, 25, 26], and
properties of the PPR operator [15,27] to establish the superconvergence property of
our Hessian recovery operator on mildly structured mesh. Then we utilize the tool
of superconvergence by difference quotients from [24] to prove the proposed Hessian
recovery method is ultraconvergent for the translation invariant finite element space
of any order.

In this section, we consider the following variational problem: find u ∈ H1(Ω)
such that

(4.1) B(u, v) =

∫
Ω

(D∇u + bu) · ∇v + cuvdx = f(v), ∀v ∈ H1(Ω).
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Here D is a 2 × 2 symmetric positive definite matrix, b is a vector, c is a number
and f(·) is a linear functional on H1(Ω). All coefficient functions are assumed to
be smooth.

In order to insure (4.1) has a unique solution, we assume the bilinear form B(·, ·)
satisfies the continuity condition

(4.2) |B(u, v)| ≤ ν‖u‖1,Ω‖v‖1,Ω,

for all u, v ∈ H1(Ω). We also assume the inf-sup conditions [3, 4, 6]

(4.3) inf
u∈H1(Ω)

sup
v∈H1(Ω)

B(u, v)

‖u‖1,Ω‖v‖1,Ω
= sup

u∈H1(Ω)

inf
v∈H1(Ω)

B(u, v)

‖u‖1,Ω‖v‖1,Ω
≥ μ > 0.

The finite element approximation of (4.1) is to find uh ∈ Sh satisfying

(4.4) B(uh, vh) = f(vh), ∀vh ∈ Sh.

To insure a unique solution for (4.4), we assume the inf-sup conditions

(4.5) inf
u∈Sh

sup
v∈Sh

B(u, v)

‖u‖1,Ω‖v‖1,Ω
= sup

u∈Sh

inf
v∈Sh

B(u, v)

‖u‖1,Ω‖v‖1,Ω
≥ μ > 0.

From (4.1) and (4.4), it is easy to see that

(4.6) B(u− uh, v) = 0

for any v ∈ Sh. In particular, (4.6) holds for any v ∈ Scomp
h (Ω).

4.1. Linear element. The linear finite element space Sh on quasi-uniform mesh
Th is considered in this subsection.

Definition 4.1. The triangulation Th is said to satisfy condition (σ, α) if there
exist a partition Th,1 ∪ Th,2 of Th and positive constants α and σ such that every
two adjacent triangles in Th,1 form an O(h1+α) parallelogram and∑

T∈Th,2

|T | = O(hσ).

An O(h1+α) parallelogram is a quadrilateral shifted from a parallelogram by
O(h1+α).

For general α and σ, Xu and Zhang [26] proved the following theorem.

Theorem 4.2. Let u be the solution of (4.1), let uh ∈ Sh be the finite element so-
lution of (4.4), and let uI ∈ Sh be the linear interpolation of u. If the triangulation
Th satisfies condition (σ, α) and u ∈ H3(Ω) ∩W 2

∞(Ω), then

|uh − uI |1,Ω � h1+ρ(|u|3,Ω + |u|2,∞,Ω),

where ρ = min(α, σ/2, 1/2).

Using the above result, we are able to obtain a convergence rate for our Hessian
recovery operator.

Theorem 4.3. Suppose that the solution of (4.1) belongs to H3(Ω) ∩W 2
∞(Ω) and

Th satisfies condition (σ, α), then we have

‖Hu−Hhuh‖0,Ω ≤ hρ‖u‖3,∞,Ω.
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Proof. We decompose Hu−Hhuh as (Hu−Hhu)+Hh(uI−uh), since Hhu = HhuI .
Using the triangle inequality and the definition of Hh, we obtain

‖Hu−Hhuh‖0,Ω ≤ ‖Hu−Hhu‖0,Ω + ‖Hh(uI − uh)‖0,Ω
= ‖Hu−Hhu‖0,Ω + ‖Gh(Gh(uI − uh))‖0,Ω.

The first term in the above expression is bounded by h|u|3,∞,Ω according to Theo-
rem 3.9. Since Gh is a bounded linear operator [16], it follows that

‖Hh(uI − uh)‖0,Ω � ‖∇(Gh(uI − uh))‖0,Ω
Notice that Gh(uI − uh) is a function in Sh and hence the inverse estimate [4, 6]
can be applied. Thus,

‖Hh(uI − uh)‖0,Ω � h−1‖Gh(uI − uh)‖0,Ω � h−1‖uI − uh‖1,Ω
and hence Theorem 4.2 implies that

‖Hh(uI − uh)‖0,Ω � hρ‖u‖3,∞,Ω.

Combining the above two estimates completes our proof. �

4.2. Quadratic element. We proceed to quadratic finite element space Sh. Ac-
cording to [10], a triangulation Th is strongly regular if any two adjacent triangles in
Th form an O(h2) approximate parallelogram. Huang and Xu proved the following
superconvergence results in [10].

Theorem 4.4. If the triangulation Th is uniform or strongly regular, then

|uh − uI |1,Ω � h3|u|4,Ω.

Based on the above theorem, we obtain the following superconvergent result.

Theorem 4.5. Suppose that the solution of (4.1) belongs to H4(Ω) and Th is
uniform or strongly regular. Then we have

‖Hu−Hhuh‖0,Ω ≤ h2‖u‖4,Ω.

Proof. The proof is similar to the proof of Theorem 4.3 by using Theorem 4.4 and
the inverse estimate. �

Remark 4.6. Theorem 4.5 can be generalized to mildly structured meshes as in [10].

4.3. Translation invariant element of any order. In this subsection, we estab-
lish the ultraconvergence theory of Hessian recovery operator Hh for the translation
invariant finite element space.

First, we observe that the Hessian recovery operator results in a difference quo-
tient. It is due to the fact that Gh is a difference quotient [27] and the composition
of two difference quotients is still a difference quotient. Let us take the linear ele-
ment on uniform triangular mesh of the regular pattern as an example; see Figure
2. The recovered second order derivative at a nodal point z is

(Hxx
h uh)(z) =

1

36h2
(−12u0 + 2u1 − 4u2 − 4u3 + 2u4 − 4u5 − 4u6 + 4u7 + 4u8 + u9

− 2u10 + u11 + 4u12 + 4u13 + 4u14 + u15 − 2u16 + u17 + 4u18).

Licensed to Univ of Calif, Santa Barbara. Prepared on Tue Oct 10 19:24:06 EDT 2017 for download from IP 169.231.151.111.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Let φj be the nodal shape functions. Since φz(z
′) = δzz′ , it follows that

(Hxx
h uh)φ0(x, y)

=
1

36h2
[−12u0φ0(x, y) + 2u1φ1(x + h, y) − 4u2φ2(x + h, y + h)

− 4u3φ3(x, y + h) + 2u4φ4(x− h, y) − 4u5φ5(x− h, y − h)

− 4u6φ6(x, y − h) + 4u7φ7(x + 2h, y) + 4u8φ8(x + 2h, y + h)

+ u9φ9(x + 2h, y + 2h) − 2u10φ10(x + h, y + 2h) + u11φ11(x, y + 2h)

+ 4u12φ12(x− h, y + h) + 4u13φ13(x− 2h, y) + 4u14φ14(x− 2h, y − h)

+ u15φ15(x− 2h, y − 2h) − 2u16φ16(x− h, y − 2h) + u17φ17(x, y − 2h)

+ 4u18φ18(x + h, y − h)].

The translations are in the directions of �1 = (1, 0), �2 = (0, 1), �3 = (
√
2
2 ,

√
2
2 ),

�4 = (
√
2
2 ,−

√
2
2 ), �5 = (

√
5
5 , 2

√
5

5 ), and �6 = ( 2
√
5

5 ,
√
5
5 ). Therefore, we can express

the recovered second order derivative as

(4.7) (Hxx
h uh)(z) =

∑
|ν|≤M

6∑
i=1

Ci
ν,huh(z + νh�i),

for some integer M .
Based on such an observation, we can prove the following lemma.

Lemma 4.7. Let all the coefficients in the bilinear operator B(·, ·) be constant; let
Ω1 ⊂⊂ Ω be separated by d = O(1); let the finite element space Sh, which includes
piecewise polynomials of degree k, be translation invariant in the directions required
by the Hessian recovery operator Hh on Ω1; and let u ∈ W k+3

∞ (Ω). Assume that
Theorem 5.2.2 from [24] is applicable. Then on any interior region Ω0⊂⊂Ω1, we get

(4.8) ‖Hh(u− uh)‖0,∞,Ω0
�

(
ln

1

h

)r̄

hk+1‖u‖k+3,∞,Ω + ‖u− uh‖−s,q,Ω

for some s ≥ 0 and q ≥ 1. Here r̄ = 1 for the linear element and r̄ = 0 for the
higher order element.

Proof. Since all coefficients in the bilinear form B(·, ·) are constant, it follows that

B(T �
ντ (u− uh), v) = B(u− uh, T

�
−ντv) = B(u− uh, (T

�
ντ )

∗v) = 0.

Notice that Hxx
h is a difference operator constructed from translation of type (4.7).

Then we have

(4.9) B(Hxx
h (u− uh), v) = B(u− uh, (H

xx
h )∗v) = 0, v ∈ Scomp

h (Ω1).

Therefore, Theorem 5.5.2 of [24] (with F ≡ 0) implies that

‖Hxx
h (u− uh)‖0,∞,Ω0

�
(

ln
d

h

)r̄

min
v∈Sh

‖Hxx
h u− v‖0,∞,Ω1

+ d−s− 2
q ‖Hxx

h (u− uh)‖−s,q,Ω1
.

(4.10)

Note that Hxx
h u ∈ Sh and hence the first term on the right-hand side of (4.10)

can be estimated by standard approximation theory under the assumption that the
finite element space includes piecewise polynomial of degree k:

(4.11) min
v∈Sh

‖Hxx
h u− v‖0,∞,Ω1

� hk+1|u|k+3,∞,Ω1
,
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provided u ∈ W k+3
∞ (Ω); see [4, 6]. It remains to attack the second term on the

right-hand side of (4.10). Note that

(4.12) ‖Hxx
h (u− uh)‖−s,q,Ω1

= sup
φ∈C∞

0 (Ω1),‖φ‖s,q′,Ω1
=1

(Hxx
h (u− uh), φ).

Here 1
q + 1

q′ = 1 and

(Hxx
h (u− uh), φ) = (u− uh, (H

xx
h )∗φ)

� ‖u− uh‖0,∞,Ω1
‖(Hxx

h )∗φ‖0,1,Ω1

� ‖u− uh‖0,∞,Ω1
,

(4.13)

where we use the fact that ‖(Hxx
h )∗φ‖0,1,Ω1

is bounded uniformly with respect to
h when s ≥ 1. Again, we apply Theorem 5.5.1 from [24] to ‖u − uh‖0,∞,Ω1

with
Ω1 ⊂⊂ Ω separated by d; then

‖u− uh‖0,∞,Ω1
�

(
ln

d

h

)r̄

min
v∈Sh

‖u− v‖0,∞,Ω

+ d−s− 2
q ‖u− uh‖−s,q,Ω.

(4.14)

If the separation parameter d = O(1) , then we combine (4.10), (4.11) and (4.14)
to obtain

(4.15) ‖Hxx
h (u− uh)‖0,∞,Ω0

�
(

ln
1

h

)r̄

hk+1‖u‖k+3,∞,Ω + ‖u− uh‖−s,q,Ω.

Following the same argument, we can establish the same result for Hxy
h , Hyx

h , and
Hyy

h . Therefore, our proof is completed by replacing Hxx
h with Hh in (4.15). �

Now we are in a perfect position to prove our main result for the translation
invariant finite element space of any order.

Theorem 4.8. Let all the coefficients in the bilinear operator B(·, ·) be constant; let
Ω1 ⊂⊂ Ω be separated by d = O(1); let the finite element space Sh, which includes
piecewise polynomials of degree k, be translation invariant in the directions required
by the Hessian recovery operator Hh on Ω1; and let u ∈ W k+3

∞ (Ω). Assume that
Theorem 5.2.2 from [24] is applicable. Then on any interior region Ω0⊂⊂Ω1, we get

(4.16) ‖Hu−Hhuh‖0,∞,Ω0
�

(
ln

1

h

)r̄

hk+1‖u‖k+3,∞,Ω + ‖u− uh‖−s,q,Ω

for some s ≥ 0 and q ≥ 1.

Proof. We decompose

(4.17) Hu−Hhuh = (Hu− (Hu)I) + ((Hu)I −Hhu) + Hh(u− uh),

where (Hu)I ∈ S2
h × S2

h is the standard Lagrange interpolation of Hu in the finite
element space Sh. By the standard approximation theory, we obtain

(4.18) ‖Hu− (Hu)I‖0,∞,Ω � hk+1|Hu|k+1,∞,Ω � hk+1|u|k+3,∞,Ω.

For the second term, using Theorem 3.9, we have

‖(Hu)I −Hhu‖0,∞,Ω0
=‖

∑
z∈Nh

((Hu)(z) − (Hhu)(z))φz‖0,∞,Ω0

� max
z∈Nh∩Ω0

|(Hu)(z) − (Hhu)(z)|

�hk+1|u|k+3,∞,Ω.

(4.19)
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The last term in (4.17) is bounded by (4.8). The conclusion follows by combining
(4.8), (4.18) and (4.19). �

Remark 4.9. Theorem 4.8 is an ultraconvergence result under the condition

‖u− uh‖−s,q,Ω � hk+σ, σ > 0.

The reader is referred to [19] for negative norm estimates.

5. Numerical tests

In this section, two numerical examples are provided to illustrate our Hessian
recovery method. The first one is designed to demonstrate the polynomial preserv-
ing property of the proposed Hessian recovery method. The second one is devoted
to a comparison of our method and some existing Hessian recovery methods in the
literature on both uniform and unstructured meshes.

In order to evaluate the performance of Hessian recovery methods, we split mesh
nodes Nh into Nh,1 and Nh,2, where Nh,2 = {z ∈ Nh : dist(z, ∂Ω) ≤ L} denotes
the set of nodes near the boundary and Nh,1 = Nh \ Nh,2 denotes the remaining
interior nodes. Now, we can define

Ωh,1 =
⋃

{τ ∈ Th : τ has all of its vertices in Nh,1},

and Ωh,2 = Ω \ Ωh,1. In the following examples we choose L = 0.1.

Let G̃h be the weighted average recovery operator. Then we define

HZZ
h uh =

(
G̃h(G̃x

huh), G̃h(G̃y
huh)

)
and

HLS
h uh =

(
G̃h(Gx

huh), G̃h(Gy
huh)

)
.

For any nodal point z, fit a quadratic polynomial pz at z as PPR. Then HQF
h is

defined as

HQF
h uh(z) =

(
∂2pz

∂x2 (0, 0) ∂2pz

∂x∂y (0, 0)
∂2pz

∂y∂x (0, 0) ∂2pz

∂y2 (0, 0)

)
.

HZZ
h , HLS

h , and HQF
h are the first three Hessian recovery methods in [22]. To

compare them, define

De = ‖Hhuh −Hu‖0,Ω1,h
, DeZZ = ‖HZZ

h uh −Hu‖0,Ω1,h
,

DeLS = ‖HLS
h uh −Hu‖0,Ω1,h

, DeQF = ‖HQF
h uh −Hu‖0,Ω1,h

,

where uh is the finite element solution.

Example 1. Consider the following function:

(5.1) u(x, y) = sin(πx)sin(πy), (x, y) ∈ Ω = (0, 1) × (0, 1).

Let uI be the standard Lagrangian interpolation of u in the finite element space.
To validate Theorem 3.9, we apply the Hessian recovery operator Hh to uI and
consider the discrete maximum error of HhuI −Hu at all vertices in N1,h. First,
linear elements on uniform meshes are taken into account. Figures 4–7 display the
numerical results. The numerical errors decrease at a rate of O(h2) for four different
pattern uniform meshes. It means the proposed Hessian recovery method preserves
polynomials of degree 3 for linear elements on uniform meshes.
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Figure 4. Numerical
result of Example 1 for
the linear element on
Regular pattern uniform
mesh
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Figure 5. Numerical
result of Example 1 for
the linear element on
Chevron pattern uniform
mesh
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Figure 6. Numerical
result of Example 1
for the linear element
on Criss-cross pattern
uniform mesh
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Figure 7. Numerical
result of Example 1
for the linear element
on Union-Jack pattern
uniform mesh

Next, we consider unstructured meshes. We start from an initial mesh generated
by EasyMesh [17] as shown in Figure 8 followed by four levels of refinement using
bisection. Figure 9 shows that the recovered Hessian HhuI converges to the exact
Hessian at rate O(h). This coincides with the result in Theorem 3.6 that Hh only
preserves polynomials of degree 2 on general unstructured meshes.

Then we turn to the quadratic element. We test the discrete error of recovered
Hessian HhuI and the exact Hessian Hu using uniform meshes of regular pattern
and the same Delaunay meshes. Similarly, we define ‖·‖∞,h as a discrete maximum
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Figure 8. An exam-
ple of unstructured mesh
generated by EasyMesh
based on Delaunay trian-
gulation
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Figure 9. Numerical
result of Example 1 for
the linear element on
Delaunay mesh with
regular refinement

norm at all vertices and edge centers in an interior region Ω1,h. The result of uniform
mesh of regular pattern is reported in Figure 10. As predicted by Theorem 3.9,
HhuI converges to Hu at a rate of O(h4) which implies Hh preserves polynomials
of degree 5 for the quadratic element on uniform triangulation. For unstructured
mesh, we observe that HhuI approximates Hu at a rate of O(h2) from Figure 11.
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Figure 10. Numerical
result of Example 1 for
the quadratic element on
regular pattern uniform
mesh
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Figure 11. Numerical
result of Example 1 for
the quadratic element on
Delaunay mesh with reg-
ular refinement
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Example 2. We consider the following elliptic equation:

(5.2)

{
−Δu = 2π2 sinπx sinπy, in Ω = [0, 1] × [0, 1],

u = 0, on ∂Ω.

The exact solution is u(x, y) = sin(πx) sin(πy). First, the linear element is consid-
ered. In Table 1, we report the numerical results for regular pattern meshes. All
four methods ultraconverge at a rate of O(h2) in the interior subdomain. The fact
that HLS

h and HZZ
h perform as good as Hh is not a surprise since it is well known

that the polynomial preserving recovery is the same as the weighted average for
uniform triangular mesh of the regular pattern.

The results of the Chevron pattern is shown in Table 2. Hhuh approximates

Hu at a rate of O(h2) while HLS
h uh, HZZ

h uh and HQF
h uh approximate Hu at a

rate of O(h). It is observed that our method out-performs the other three Hessian
recovery methods on the Chevron pattern uniform meshes. To the best of our
knowledge, the proposed PPR-PPR Hessian recovery is the only method to achieve
O(h2) superconvergence for the linear element under the Chevron pattern triangular
mesh.

Table 1. Numerical comparison of several Hessian recovery meth-
ods for the linear element on regular pattern uniform mesh

Dof De order DeZZe order DeLS order DeQF order

121 7.93e-001 – 9.73e-001 – 7.93e-001 – 4.01e-001 –

441 2.02e-001 1.06 2.02e-001 1.22 2.02e-001 1.06 1.03e-001 1.05

1681 5.10e-002 1.03 5.10e-002 1.03 5.10e-002 1.03 2.61e-002 1.03

6561 1.28e-002 1.02 1.28e-002 1.02 1.28e-002 1.02 6.53e-003 1.02

25921 3.20e-003 1.01 3.20e-003 1.01 3.20e-003 1.01 1.63e-003 1.01

103041 8.00e-004 1.00 8.00e-004 1.00 8.00e-004 1.00 4.08e-004 1.00

Table 2. Numerical comparison of several Hessian recovery meth-
ods for the linear element on Chevron pattern uniform mesh

Dof De order DeZZe order DeLS order DeQF order

121 6.51e-001 – 7.98e-001 – 7.82e-001 – 9.03e-001 –

441 1.34e-001 1.22 2.12e-001 1.03 2.34e-001 0.93 4.30e-001 0.57

1681 3.38e-002 1.03 7.96e-002 0.73 9.87e-002 0.64 2.11e-001 0.53

6561 8.46e-003 1.02 3.57e-002 0.59 4.68e-002 0.55 1.05e-001 0.51

25921 2.11e-003 1.01 1.73e-002 0.53 2.30e-002 0.52 5.23e-002 0.51

103041 5.29e-004 1.00 8.57e-003 0.51 1.15e-002 0.50 2.62e-002 0.50

Then the Criss-cross pattern mesh is considered and results are displayed in
Table 3. An O(h2) convergence rate is observed for our recovery method, HLS

h and

HZZ
h while no convergence rate is observed for HQF

h . The results for the Union-
Jack pattern mesh is very similar to the Criss-cross pattern mesh except that our
recovery method superconverges at a rate of O(h2) as shown in Table 4.
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Table 3. Numerical comparison of several Hessian recovery meth-
ods for the linear element on Criss-cross pattern uniform mesh

Dof De order DeZZe order DeLS order DeQF order

221 5.49e-001 – 3.57e-001 – 4.40e-001 – 7.14e-001 –

841 1.28e-001 1.09 8.03e-002 1.12 1.04e-001 1.08 6.17e-001 0.11

3281 3.22e-002 1.01 2.01e-002 1.02 2.62e-002 1.01 5.95e-001 0.03

12961 8.06e-003 1.01 5.04e-003 1.01 6.55e-003 1.01 5.90e-001 0.01

51521 2.02e-003 1.00 1.26e-003 1.00 1.64e-003 1.00 5.89e-001 0.00

205441 5.04e-004 1.00 3.15e-004 1.00 4.09e-004 1.00 5.88e-001 0.00

Table 4. Numerical comparison of several Hessian recovery meth-
ods for the linear element on Union-Jack pattern uniform mesh

Dof De order DeZZe order DeLS order DeQF order

121 1.25e+000 – 8.40e-001 – 9.87e-001 – 1.05e+000 –

441 3.16e-001 1.06 1.77e-001 1.20 2.48e-001 1.07 6.95e-001 0.32

1681 7.96e-002 1.03 4.46e-002 1.03 6.24e-002 1.03 6.14e-001 0.09

6561 2.00e-002 1.02 1.12e-002 1.02 1.56e-002 1.02 5.95e-001 0.02

25921 5.00e-003 1.01 2.80e-003 1.01 3.91e-003 1.01 5.90e-001 0.01

103041 1.25e-003 1.00 6.99e-004 1.00 9.78e-004 1.00 5.89e-001 0.00

Table 5. Numerical comparison of several Hessian recovery meth-
ods for the linear element on Delaunay mesh with regular refine-
ment

Dof De order DeZZe order DeLS order DeQF order

139 4.31e-001 – 4.38e-001 – 4.40e-001 – 3.26e-001 –

513 1.38e-001 0.87 2.20e-001 0.53 1.49e-001 0.83 1.79e-001 0.46

1969 5.39e-002 0.70 2.36e-001 -0.05 5.85e-002 0.69 8.88e-002 0.52

7713 2.38e-002 0.60 1.62e-001 0.28 2.55e-002 0.61 4.35e-002 0.52

30529 1.14e-002 0.54 1.13e-001 0.26 1.19e-002 0.56 2.15e-002 0.51

121473 5.59e-003 0.51 7.97e-002 0.25 5.73e-003 0.53 1.07e-002 0.51

Now, we turn to unstructured mesh generated by EasyMesh [17] as in the previ-

ous examples. Numerical data are listed in Table 5. Hh, HLS
h and HQF

h converge
at a rate of O(h) while HZZ

h only converges at a rate of O(h0.5).
The results above indicate clearly that our Hessian recovery method converges

at rate O(h) on general Delaunay meshes, which is predicted by Theorem 4.3. On
uniform meshes, we can obtain O(h2) ultraconvergence on an interior sub-domain
as predicted by Theorem 4.8.

In the end, we consider the quadratic element. Note that our Hessian recovery
method is well defined for arbitrary order elements. However, the extension of the
other three methods to the quadratic element is not straightforward or even im-
possible and hence only our method is implemented here. We report the numerical
results in Figure 12 for regular pattern uniform mesh. A rate of about O(h3.2)

Licensed to Univ of Calif, Santa Barbara. Prepared on Tue Oct 10 19:24:06 EDT 2017 for download from IP 169.231.151.111.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1690 HAILONG GUO, ZHIMIN ZHANG, AND REN ZHAO

Number of DOF

102 103 104 105
10-7

10-6

10-5

10-4

10-3

10-2

1

1.6

||H
u
 –

 H
h
u
h
|| 0

,Ω
1,
h

Figure 12. Numerical
result of Example 2 for
the quadratic element on
regular pattern uniform
mesh
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Figure 13. Numerical
result of Example 2 for
the quadratic element on
Delaunay mesh with reg-
ular refinement

order convergence is observed, which is a bit better than the theoretical result pre-
dicted by Theorem 4.8. Figure 13 shows the result for Delaunay mesh generated
by EasyMesh [17]. A rate of about O(h1.9) superconvergence is observed.

6. Concluding remarks

In this work, we introduced a Hessian recovery method for arbitrary order La-
grange finite elements. Theoretically, we proved that the PPR-PPR Hessian re-
covery operator Hh preserves polynomials of degree k + 1 on general unstructured
meshes and preserves polynomials of degree k + 2 on translation invariant meshes.
This polynomial preserving property, combined with the supercloseness property of
the finite element method, enabled us to prove convergence and superconvergence
results for our Hessian recovery method on mildly structured meshes. Moreover, we
proved the ultraconvergence result for the translation invariant finite element space
of any order by using the argument of superconvergence by difference quotient from
[24].
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