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Abstract. This paper investigates gradient recovery schemes for data defined on discretized
manifolds. The proposed method, parametric polynomial preserving recovery (PPPR), does not ask
for the tangent spaces of the exact manifolds which have been assumed for some significant gradient
recovery methods in the literature. Another advantage of the proposed method is that it removes the
symmetric requirement from the existing methods for the superconvergence. These properties make
it a prime method when meshes are arbitrarily structured or generated from high curvature surfaces.
As an application, we show that the recovery operator is capable of constructing an asymptotically
exact posteriori error estimator. Several numerical examples on 2–dimensional surfaces are presented
to support the theoretical results and make comparisons with methods in the state of the art, which
show evidence that the PPPR method outperforms the existing methods.
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1. Introduction. Numerical methods for approximating variational problems
or partial differential equations (PDEs) with solutions defined on surfaces or mani-
folds are of growing interests over the last decades. Finite element methods, as one
of the main streams in numerical simulations, are well established for those problems.
A starting point can be traced back to [17], which is the first to investigate a finite
element method for solving elliptic PDEs on surfaces. Since then, there have been a
lot of extensions both in analysis and in algorithms, see for instance [9–11, 18, 26–28]
and the references therein. In the literature, most of the works consider the a priori
error analysis of various surface finite element methods, and only a few works, up
to our best knowledge, take into account the a posteriori error analysis and super-
convergence of finite element methods in a surface setting, see [5, 7, 8, 11, 12, 16, 30].
Recently, there is an approach proposed in [19] which merges the two types of analysis
to develop a higher order finite element method on an approximated surface, where
a gradient recovery scheme plays a key role. Gradient recovery techniques, which are
important in post processing solutions or data for improving the accuracy of numerical
simulations, have been widely studied and applied in many aspects of numerical anal-
ysis. In particular for planar problems, the study of gradient recovery methods has
reached already a mature stage, and there is a massive of works in the literature, to
name but only a few [1,4,21,24,31–34]. We point out some significant methods among
them, like the classical Zienkiewicz–Zhu (ZZ) patch recovery method [33], and a later
method called polynomial preserving recovery (PPR) [32]. The two approaches work
with different philosophies in methodology. The former method first locates positions
of certain points in the given mesh, and then recovers the gradients themselves at
those points to achieve a higher order approximation accuracy, while the latter one
first recovers the function values by polynomial interpolations in a local patch at each
nodal points, and then takes gradients at the nodal points from the previously recov-
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ered functions. Both the methods can produce comparable superconvergence results,
but do not require the same assumptions on the discretized meshes.

Gradient recovery methods for data defined on curved spaces have only recently
been investigated. In [30], several gradient recovery methods have been adapted
to a general surface setting for linear finite element solutions which are defined on
polyhedrons by triangulation. There a surface is concerned to be a zero level set of
a smooth function defined in a higher dimensional space, which is from the point
of view of an ambient space of the surface. It has been shown that most of the
properties of the gradient recovery schemes for planar problems are maintained in
their counterparts for surface problems. In particular, in their implementation and
analysis, the methods ask for exact knowledge of the surface, e.g. the nodal points are
located on the exact surface, and the tangent spaces or in another word the normal
vector field are given. However, this information is usually not available in reality,
where we have only the approximations of surfaces, for instance, polyhedrons, splines
or polynomial surfaces. On the other hand, the generalized ZZ scheme for gradient
recovery with surface elements gives the most competitive results in [30], including
several other methods, their superconvergence are proved with the assumption that
the local patch is O(h2)−symmetric on the discretized surfaces, which is restrictive in
applications. In the planar case, the O(h2)−symmetric condition is also asked for the
superconvergence by these methods which have been generalized to a surface setting
in [30], but it is not necessary for the PPR method.

This difference gives us the motivation to generalize the PPR method for problems
with data defined on manifolds. A follow-up question would be what are the polyno-
mials in the domains of curved manifolds. Using the idea from the literature, e.g. [16],
one could consider polynomials locally on the tangent spaces of the manifolds. Obvi-
ously, a direct generalization of PPR to a manifold setting based on tangent spaces
will again fall into the awkward situation: The exact manifold and its tangent spaces
are unknown.

To overcome these difficulties, we go back to the original definition of a manifold.
We take the manifold as patches locally parametrized by Euclidean planar domains,
but not necessarily by their tangent spaces. This has no interruption for us to define
patch-wise polynomials in such planar parameter domains. In this manner, we are
able to recover the unknown surfaces from the given sampling points in these local
domains, as well as the finite element solutions iso-parametrically. Our proposed
method is thus called parametric polynomial preserving recovery (PPPR) which does
not rely on the O(h2)− symmetric condition for the superconvergence, just like its
genetic father PPR. To this end, it will be revealed that PPPR is particularly useful
to address the issue of unavailable tangent spaces, and thus it enables us to solve the
open issues in [30]. Another benefit of the PPPR method for data on a surface is
that it is relatively curvature stable in comparing with the methods proposed in [30].
This is verified by our numerical examples, but a quantitative analysis will be open
in the paper. Moreover, the original PPR method [32] does not preserve the function
values at the nodal points in its pre-recovery step. In this paper, we provide an
alternative method which can achieve this goal. With this option, the PPPR can not
only preserve parametric polynomial, but also preserve the surface sampling points
and the function values at the given points simultaneously. That means the given
data is invariant during the recovery by using the PPPR method.

The rest of the paper is organized as follows: Section 2 gives a preliminary account
on relevant differential geometry concepts and an analytic PDE problem. Section 3
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introduces discretized function spaces and collects some geometric notations used in
the paper. Section 4 presents the new algorithms especially the PPPR for gradient
recovery on manifolds. There we make remarks on the comparison of algorithms and
the idea of preserving function values, and provide an argument for its curvature
stable property. Section 5 gives a brief analysis of the superconvergence properties
of the proposed method. Section 6 analyze the recovery-based a posteriori estimator
using the new gradient recovery operators. Finally, we present some numerical results
and the comparisons with existing methods in Section 7. We have a proof of a basic
lemma in Appendix A.

2. Background. We will only show some basic concepts which are relevant to
our paper. For a more general overview on the topic of Riemannian geometry or
differential geometry, one could refer to for instance [13, 25]. In the context of the
paper, we shall consider (M, g) as an oriented, connected, C3 smooth and compact
Riemannian manifold without boundary, where g denotes the Riemann metric tensor.
The idea we are going to work should be no restriction for general n dimensional
manifolds, but we will focus on the case of two dimensional ones, which are also
called surfaces, in the later applications and numerical examples.

Our concerns are some quantities u :M→ R which are scalar functions defined
on manifolds. First, let us mention the differentiation of a function u in a manifold
setting, which is called covariant derivatives in general. It is defined as the directional
derivatives of the function u along an arbitrarily selected path γ on the manifold

Dvu =
du(γ(t))

dt
|t=0,

here v = γ(t)′|t=0 is a tangential vector field.
The gradient then is an operator such that

(∇gu(x),v(x))g = Dvu, for all v ∈ TxM and all x ∈M.

It is not harm to think of the gradient as a tangent vector field on the manifoldM.
In a local coordinate, the gradient has the form

∇gu =
∑
i,j

gij∂ju∂i, (2.1)

where gij is the entries of the inverse of the metric tensor g, and ∂i denotes the
tangential basis. Let r : Ω → S ⊂ M be a local geometric mapping, then we can
rewrite (2.1) into a matrix form with this local parametrization, that is

(∇gu) ◦ r = ∇û(g ◦ r)−1∂r. (2.2)

In (2.2), û = u ◦ r is the pull back of function u to the local planar parameter domain
Ω, ∇ denotes the gradient on the planar domain Ω, ∂r is the Jacobian matrix of r,
and g ◦ r = ∂r(∂r)T on this patch.

Remark 2.1. r is not specified here, and we will make it clear when it becomes
necessary later. We actually have a relation that

(∂r)† = (g ◦ r)−1∂r, (2.3)

where (∂r)† denotes the Moore-Penrose inverse of ∂r. See [14, Appendix] for a detailed
explanation.
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Note that the parametrization map r is not unique, typical ones can be con-
structed through function graphs which will be used in our later algorithms. We have
the following lemma of which the proof is given in Appendix A.

Lemma 2.1. The gradient (2.2) is invariant under different chosen of regular
isomorphic parametrization functions r.

Let ω = dvol be the volume form onM, and ∂j (j = 1, · · · , n) be the tangential
bases. For every tangent vector field v :M→ TM, v = vi∂i, we have a n − 1 form
defined by the interior product of v and the volume form ω through the following way

ivω =
∑
k

ω(v, ∂k1 , · · · , ∂kn−1),

where k1, · · · , kn−1 are n−1 indexes with k taking out from 1, · · · , n. The divergence
of the vector field v then satisfies

d(ivω) = divg(v)ω, (2.4)

where d denotes the exterior derivative. Since both the left hand side and the right
hand side of (2.4) are n forms, divg(v) is a scalar field. Using the local coordinates,
we can write the volume form explicitly

ω =
√
|det g|dx1 ∧ · · · ∧ dxn.

Applying equation (2.4), the divergence of the vector field v can be computed by

divgv =
1√
|det g|

∂i(v
i
√
|det g|).

It is revealed that the divergence operator is actually the dual of the gradient operator.
With the above preparation, we can now given the definition of the Laplace-Beltrami
operator, which is denoted by ∆g in our paper, as the divergence of the gradient, that
is

∆gu = divg(∇gu) =
1√
|det g|

∂i(g
ij
√
|det g|∂ju).

We mention that if the manifoldM is a hyper-surface, that isM⊂ Rn+1 which
has co-dimension 1. The gradient and divergence of the function u can be equally
calculated through projecting the gradient and divergence of an extended function in
ambient space Rn+1 to the tangent spaces ofM respectively. This type of definitions
has been applied in many references which consider problems in an ambient space
setting, i.e.

∇gu = (PT∇e)ue, and divgv = (PT∇e) · ve,

where ue and ve are the extended scalar and vector fields defined in the ambient space
of the hypersurface, which satisfies ue(x) = u(x) and ve(x) = v(x) for all x ∈ M.
Note that ∇e· is the gradient operator defined in the ambient Euclidean space Rn+1,
PT is the tangential projection operator

PT = Id− n⊗ n,

and n is a unit normal vector field of M. It can be showed that the gradient and
divergence by projections are independent of the way of the extension of the scalar or
vector fields, and they are equivalent to the former definitions.
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With the generalized notions of the differentiation on manifolds, the function
spaces based on manifold domains can be studied analogously to Euclidean domains.
Sobolev spaces on manifolds [23] are one of the mostly investigated spaces, which
provide a breeding ground to study PDEs. We are interested in numerically approxi-
mating PDEs of which the solutions are defined onM. Even though our methods are
problem independent, in this paper, our analysis will be mainly based on the Laplace-
Beltrami operator (2.5), and its generated PDEs. For the purpose of both analysis and
applications, we consider an exemplary problem [17] the Laplace-Beltrami equation,
that is for a given f satisfying

∫
M f dvol = 0 to solve the equation

−∆gu = f onM, with
∫
M
u dvol = 0, (2.5)

where dvol denotes the manifold volume measure.

3. Function Spaces on Discretized Manifolds. The discretization of a smooth
manifold M has been widely studied in many settings, especially in terms of sur-
faces [18]. A discretized surface, in most cases, is a piecewise polynomial surface. One
of the most simple case is the polygonal approximation to a given smooth surface,
especially with triangulations. Finite element methods for triangulated meshes on
surfaces have firstly been studied in [17] by using linear elements. In [10], a general-
ization of [17] to high order finite element method is proposed based on triangulated
surfaces. In order to have an optimal convergence rates, it is showed that the geomet-
ric approximation error and the function approximation error has to be compatible
with each other. In fact, the balance of geometric approximation errors and func-
tion approximation errors is also the key point in the development of our recovery
algorithm.

In this paper, we will denote Mh =
⋃
j∈Jh Th,j the triangulated surface, where

(Th,j)j∈Jh is the set of triangles, and h = maxj∈Jh D(Th,j) is the maximum diameter.
We restrict ourselves to the first order finite element methods, thus the nodes consist
of simply the vertices ofMh, which we denote by (xi)i∈Ih .

In the following, we define transform operators between the function spaces on
M and function spaces onMδ, whereMδ denotes some perturbation ofM.

Tδ : V(M)→ Vδ(Mδ);

v 7→ v ◦ Pδ,
(3.1)

and its inverse

(Tδ)
−1 : Vδ(Mδ)→ V(M);

vδ 7→ vδ ◦ P−1
δ ,

(3.2)

where Pδ is a continuous and bijective projection map fromMδ toM.
We have the following lemma with triangulated approximationMδ =Mh.
Lemma 3.1. For V(M) ↪→ W k,p(M) k ≥ 0, p ≥ 1, the transform operators

(Th)±1 are uniformly bounded between the spaces V(M) and Vh(Mh) as long as the
space Vh(Mh) is compatible with the smoothness ofMh.

Proof. For every v ∈ V(M), denote v̌h := Thv. Each triangular faces Th,j ofMh

corresponding to a curved triangle faces on M, and we denote it as Tj . If p = ∞,
every function v and its derivatives are uniformly bounded onM, then we can always
find constants c and C such that

c ‖v̌h‖k,∞,Mh
≤ ‖v‖k,∞,M ≤ C ‖v̌h‖k,∞,Mh

.
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For 1 ≤ p <∞, using the results in [10, page 811], we have the equivalence of ‖v‖k,p,Tj
and ‖v̌h‖k,p,Th,j

. That is there exists positive and uniformly bounded constants ch,j
and Ch,j , such that

ch,j ‖v̌h‖pk,p,Th,j
≤ ‖v‖pk,p,Tj ≤ Ch,j ‖v̌h‖

p
k,p,Th,j

,

holds on each pair of the triangular faces. Since ‖v‖pk,p,M =
∑
j∈Jh ‖v‖

p
k,p,Tj we have

then the estimate

min {ch,j} ‖v̌h‖pk,p,Mh
≤ ‖v‖pk,p,M ≤ max {ch,j} ‖v̌h‖pk,p,Mh

,

which gives the conclusion.
Remark 3.1. The statement of Lemma 3.1 hold also for higher order continuous

piece-wise polynomial approximation ofM.
We give here an assumption on the triangulations of surfaces, which is a common

condition to have the so-called supercloseness.
Assumption 3.2. Mh is a quasi-uniform and shape regular triangulation ofM,

and it satisfies the O(h2σ) irregular condition (cf. [4, Definition 2.4], or [30, Definition
3.2]).
For convenience, Table 3.1 collects some notations in the paper.

Table 3.1: Notations

Notation Remark
(M, g) a smooth, connected, oriented and close manifold with metric g
(Mh, gh) a polyhedral approximation ofM with piece-wise smooth metric gh
n a unit normal vector field onM
∇g gradient operator with respect to the metric g
∆g Laplace-Beltrami operator with respect to the metric g
Tx the tangent space at a position x ∈M
(Ph)±1 bijective maps betweenMh andM
(Th)±1 operators map between function spaces onM and onMh

(Tδ)
±1 operators map between function spaces onM and onMδ

h the diameter of the triangulation mesh inMh

Ω a planar domain which locally parametrize a patch ofM
ζ a position variable in the parameter domain Ω
r(or rh) a local parametrization map from Ω to a patch ofM (orMh)
vol(or volh) the volume (area) measure ofM (orMh)
‖·‖k,p,M W k,p norm of functions defined onM
|·|k,p,M W k,p semi-norm of functions defined onM
‖·‖k,M Hk norm of functions defined onM
Ih the total number of the nodal points (vertices) ofMh

Jh the total number of the triangles onMh

P 2(Ω) the 2nd order polynomial space over a planar domain Ω

4. Parametric Polynomial Preserving Recovery on Manifolds. Our de-
velopments are based on the so-called PPR method proposed in [32] for planar prob-
lems. It is a robust and high accuracy approach for recovering gradient on mildly
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structured triangular meshes. This idea has been developed to recover Hessian in a
recent paper [22]. In the current paper, we show the possibility of some generaliza-
tions into a manifold domain. To simplify the presentation, we shall restrict to the
case of 2 dimensional manifolds here and after.

We will mainly considerMh a triangulated polyhedron approximation ofM, and
post-process with first order finite element solutions. At each node xi, let B(xi) the
set of vertices of the triangles which share the node xi as a common vertex. For a
discretized manifold, a main difficulty is that the vertices in B(xi) are in general not
located on a common plane, another difficulty is that there is no trivial definition of
polynomials in a manifold setting. Some idea appeared in the literature is using the
tangent space Txi

at every vertex xi as a local parameter domain, and projecting the
neighboured vertices of xi onto this common planar plane, then defining polynomials
locally by the coordinates of the tangent space. This idea has been applied in [16] and
also in [30] to generalize the ZZ method and several other methods. However, the
exact manifoldM is usually not given in real problems, therefore the tangent spaces
(Txi

)i∈Ih ofM are blind to users, which makes the idea not much reliable in practice.
This problem has also been claimed as an open issue in [30].

As a starting point, we first provide an direct generalization of the PPR method
based on given tangent spaces of the exact manifold M. In this case, the algorithm
is pretty much as the same as the planar one. We sketch it in Algorithm 1.

Algorithm 1 PPR Method (with Information of Exact Surfaces)
Let the discretized triangular surfaceMh and the data (FEM solutions) (uh,i)i∈Ih be
given, and the vertices (xi)i∈Ih be located on the exact surfaceM. Also, we have the
the normal vector (ni)i∈Ih ofM at each vertex xi. Then repeat steps (1)− (3) for all
i ∈ Ih.

(1) At each vertex xi, select all the neighbored vertices within a sufficiently big
geodesic ball B(xi) such that the rank conditiona is satisfied. Shift xi to be
the origin of Txi

, and choose an orthonormal basis (τ i1, τ
i
2) of Txi

, then project
the vertices xj ∈ B(xi) to Txi with the new coordinates denoted by ζij . Ii
denotes the indexes of the selected vertices in B(xi).

(2) Reconstruct an interpolation polynomial pi by the coordinates of the tangent
plane from the FEM solutions at the given vertices, where pi is the minimizer

pi = arg min
p

∑
j∈Ii

|p(ζij )− uh,j |2 for p ∈ P 2(Txi
).

(3) Calculate the partial derivatives of the approximated polynomial functions,
then we have the recovered gradient at each vertex xi

G1,huh(xi) = ∂1pi(0, 0)τ i1 + ∂2pi(0, 0)τ i2. (4.1)

For the recovery of the gradient G1,huh on the wholeMh, we propose to interpolate
the values {G1,huh(xi)}i∈Ih by using linear finite element basis on each triangles.

aThe rank condition is asked in the step (2) in order to have a stable solution of the least square
problem, see [32] for a detailed discussion.

In fact, Algorithm 1 continues with the ambient space setting for surfaces. We
point out that a straight forward remedy for missing exact normal fields is to find a
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way to approximate normal vectors at every vertex xi, for instance, by simple average
or weighted average of the normal vectors of each faces adjunct to xi. However, in this
way, the recovery error will very likely be dominated by the error of the approximation
of the normal vector fields. See also the numerical results in Section 7.

In the following, we shall provide another algorithm which is neither relying on
the information of the tangent spaces, nor the knowledge of the exact surface. Our
idea goes to the gradient formulation (2.2), which is able to calculate the gradient
from an arbitrary local parametrization (either exact or approximated). It is in fact
an intrinsic point of view for manifolds.

Algorithm 2 PPPR Method (without Asking for Exact Surfaces)
Let the discretized triangular surfaceMh and the data (FEM solutions) (uh,i)i∈Ih be
given. Then repeat steps (1)− (4) for all i ∈ Ih.

(1) At each vertex xi, select all the neighbored vertices within a sufficiently big
geodesic ball B(xi), such that the rank condition is satisfied. Construct a
local parameter domain Ωi, and shift xi to be the origin of Ωi, and choose
(φi1, φ

i
2) the orthonormal basis of Ωi, and φi3 a unit orthogonal vector to Ωi,

then project all selected vertices xj ∈ B(xi) into the parameter domain Ωi,
with the new coordinates denoted by ζij . The principle of finding such Ωi is
to make sure the triangles are shape regular after projection. Ii denotes the
indexes of the selected vertices in B(xi).

(2) Reconstruct a 2nd order polynomial surface Si over Ωi by interpolating
the chosen vertices in the new coordinates. Typically, we can approxi-
mate the surface locally as a function graph parametrized by Ωi. That is
Si = rh,i(Ωi) =

⋃
ζ∈Ωi

(ζ, si(ζ)), where si is given as

si = arg min
s

∑
j∈Ii

|s(ζij )− 〈xj , φi3〉|2 for s ∈ P 2(Ωi).

(3) Reconstruct a 2nd order polynomial pi over Ωi to interpolate the solutions at
the given vertices of each B(xi)

pi = arg min
p

∑
j∈Ii

|p(ζij )− uh,j |2 for p ∈ P 2(Ωi).

(4) Calculate the partial derivatives of both the polynomial approximated surface
function in the second step and the approximated polynomial function of
FEM solution in the third step, then we can approximate the gradient which
is given in (2.2). In the local coordinates,

G2,huh(xi) =

(
1 0 ∂1si(0, 0)
0 1 ∂2si(0, 0)

)†(
∂1pi(0, 0)
∂2pi(0, 0)

)(
φi1 φ

i
2 φ

i
3

)
. (4.2)

The last equation here is given by (2.3) in the remark 2.1 for calculating (2.2).
To multiply with the orthonormal basis

{
φi1, φ

i
2, φ

i
3

}
is because we have to

unify the coordinates from local ones to a global one.
For the recovery of the gradient G2,huh on the wholeMh, we propose to interpolate
the values {G2,huh(xi)}i∈Ih by using linear finite element basis on each triangles.

8



Remark 4.1. We point out that if Ωi = Txi
for all i ∈ Ih, and we shift xi to

be the origin of Txi
, then ∂1si(0, 0) = ∂2si(0, 0) ≡ 0 for all i ∈ Ih, and φi1 = τ i1,

φi2 = τ i2, φi3 = ni. It is easy to find that the recovered gradient in (4.2) is equal
to the one recovered in (4.1). That is Algorithm 2 actually generalizes Algorithm 1.
Thus in a later analysis in Section 5, we do not distinguish the notation Gh for the
recovery operator given either by Algorithm 1 or by Algorithm 2. However, we stress
that the two algorithms are not equivalent if Algorithm 1 use approximated normal
vector fields, in this case, we will use Ga1,h for the operator.

Remark 4.2. In fact, in both Algorithm 1 and Algorithm 2, we have another
alternative way for the polynomial reconstruction instead of the one presented in the
algorithms, which is originally proposed in [32]. The method in [32] assumes that a
second order polynomial has a form

p(y) = a0 + a1y1 + a2y2 + a3y
2
1 + a4y1y2 + a5y

2
2 , for y = (y1, y2) ∈ Ωi

then solving the linear system Aa = b for a = (a0, a1, · · · , a5)T , where

A =


1 ζi1,1 ζi1,2 ζ2

i1,1
ζi1,1ζi1,2 ζ2

i1,2

1 ζi2,1 ζi2,2 ζ2
i2,1

ζi2,1ζi2,2 ζ2
i2,2

... · · ·
1 ζi|Ii|,1 ζi|Ii|,2 ζ2

i|Ii|,1
ζi|Ii|,1ζi|Ii|,2 ζ2

i|Ii|,2

 and b =


uh,i1
uh,i2
...

uh,i|Ii|

 .

(4.3)
The solution of the least square approximation in the algorithms is given by

a = (ATA)−1ATb,

which tells that ∂1p(0, 0) = a1 and ∂2p(0, 0) = a2.
Our observation is that there are some extra freedom can be reduced in the re-

construction of the polynomials. Since the polynomial recovery can not improve the
accuracy of the solution itself, it is unnecessary to adapt the solution in gradient re-
covery. We can fix this problem by using the following polynomial equation locally

p̄(y) = uh,i1 + ā1y1 + ā2y2 + ā3y
2
1 + ā4y1y2 + ā5y

2
2 , for y = (y1, y2) ∈ Ωi

where uh,i1 is the finite element solution at the vertex xi. Let ζi1 = (ζi1,1, ζi1,2) be the
origin (0, 0) of the plane Ωi, then the matrix and the vector in (4.3) can be simplified
to

Ā =

 ζi2,1 ζi2,2 ζ2
i2,1

ζi2,1ζi2,2 ζ2
i2,2

... · · ·
ζi|Ii|,1 ζi|Ii|,2 ζ2

i|Ii|,1
ζi|Ii|,1ζi|Ii|,2 ζ2

i|Ii|,2

 and b̄ =

 uh,i2 − uh,i1
...

uh,i|Ii| − uh,i1

 .

(4.4)
Solving the problem in the least square sense

ā = (ĀT Ā)−1ĀT b̄,

then we have ∂1p̄(0, 0) = ā1 and ∂2p̄(0, 0) = ā2.
Using (4.4) in stead of (4.3), the gradient recovery algorithms not only preserve

polynomials but also preserve the function values at the recovered nodal points. This
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idea can be applied to replace the polynomial reconstruction in the 2nd step of Algo-
rithm 1, and also to replace the polynomial reconstruction in both the 2nd and the 3rd

step of Algorithm 2.
Remark 4.3. We claim that the PPPR (also the PPR with exact normal field)

gives the most competitive results for the recovery of gradient when the approximated
surface is featured with some high curvature. Our argument is that, in the planar case,
the PPR is the most robust method with respect to unstructured meshes in comparing
with the other methods. For a surface with complicated curvature, a well structured
triangulation after projecting to the parametric domains or tangent spaces, is very
likely not keeping the good structure any more. The PPPR method is in fact using
the PPR to reconstruct both the tangent vectors of the surface and the gradient of the
solutions in local parametric domains, which is more stable than the other methods for
those mildly structured meshes projected from the high curvature areas. This claim
has been supported by our numerical tests, see Numerical Example 2 in Section 7,
however, a quantitative analysis on this property is open for future.

Lemma 2.1 indicates that for every fixed xi, taking arbitrary Ωi, the gradient
operator is analytically invariant. We then suppose the PPPR should work properly
for different choice of Ωi at a fixed xi. The main issue is that, numerically, the shape
of the triangles must not be destroyed after projecting them to the domain Ωi. Thus,
we still have to find a proper way for this projection. In practice, we can use the
approximating normal vectors to help us to locate and orient a suitable parameter
domain Ωi, and this is what we have done in our numerical test. Our numerical
results show that the accuracy of the approximations of normal vectors has very little
influence to the recovery accuracy of the gradient by the PPPR, which is contrast
to the case for Algorithm 1 where the recovery accuracy highly relies on the error of
the approximating normal vectors. The nature of Algorithm 2 allows us to apply the
analysis of the PPR which has been developed for planar problems.

5. Superconvergence Analysis. In the following, we shall show the supercon-
vergence property of the proposed algorithms. Although our algorithms are problem
independent, in order to make the discussion simple, we will take the equation (2.5)
as our example, and discuss with the approximation by the first order finite element
methods on triangulated surfaces. The variational formulation of problem (2.5) is
given as follows: Find u ∈ H1(M) such that∫

M
∇gu · ∇gv dvol =

∫
M
fv dvol for all v ∈ H2(M). (5.1)

The regularity of the solutions has been proved in [2, Chapter 4]. Using finite element
methods, the surfaceM is approximated by the triangulationMh which satisfy As-
sumption 3.2, and the solution is simulated in the piecewise linear function spaces Vh
defined overMh,∫

Mh

∇ghuh · ∇ghvh dvolh =

∫
Mh

fhvh dvolh for all vh ∈ Vh(Mh). (5.2)

Lemma 5.1. Let Gh be the gradient recovery operator by Algorithm 1 or 2, then
it is a bounded linear operator and preserves polynomial in every parametric domain
Ωi for all i ∈ Ih. Moreover, if u ∈ H3(M)

⋂
W 2,∞(M), then we have the estimate∥∥∇gu− T−1

h Gh(Thu)
∥∥

0,∞,M ≤ Ch
2|u|3,M. (5.3)

10



Proof. Since on the parametric domain Ωi the operator Gh is using PPR method
both for surface interpolation and for function interpolation, which are r and u ◦ r
defined on the local parametric domain Ωi respectively. Thus, we refer to [32, Theorem
2.1] (See [20] for proof of sharp estimate for PPR) for the statement of preserving
polynomial on every parametric domain Ωi for both the local geometric mapping r
and the function u◦r. Then we can have the estimate (5.3) by using Hilbert–Bramble
lemma and triangle inequality on each Ωi.

Theorem 5.2. Let Assumption 3.2 hold forMh, and let u ∈ H3(M)
⋂
W 2,∞(M)

be the solution of (5.1), and uh be the solution of (5.2), then∥∥∇gu− T−1
h Ghuh

∥∥
0,M . h1+min{1,σ}(‖u‖3,M + ‖u‖2,∞,M) + h2 ‖f‖0,M . (5.4)

Proof. By triangle inequality, we have∥∥∇gu− T−1
h Ghuh

∥∥
0,M ≤

∥∥∇gu− T−1
h Gh(Thu)

∥∥
0,M +

∥∥T−1
h Gh(Thu− uh)

∥∥
0,M .

We apply Lemma 5.1 with the embedding of L∞(M) ↪→ L2(M) for compact man-
ifold to the first term on the right hand side, and apply [30, Theorem 3.5] and the
boundedness of both the operators T−1

h and Gh to the second term. Then we get the
conclusion.

Due to Lemma 3.1, we have the following result immediately.
Corollary 5.3. Let the same assumptions as Theorem 5.2 hold, then

‖Th∇gu−Ghuh‖0,Mh
. h1+min{1,σ} ‖u‖3,M + ‖u‖2,∞,M) + h2 ‖f‖0,M . (5.5)

6. Recovery-based a posteriori error estimator. The gradient recovery op-
erator Gh naturally provides an a posteriori error estimator. We define a local a
posteriori error estimator on each triangular element Th,j as

ηh,Th,j
= ‖(Ghuh − Th∇gT−1

h uh)‖0,Th,j
, (6.1)

and the corresponding global error estimator as

ηh =

∑
j∈Jh

η2
h,Th,j

1/2

. (6.2)

With the previous superconvergence result, we are ready to prove the asymptotic
exactness of error estimators based on the recovery operator Gh.

Theorem 6.1. Assume the same conditions in Theorem 5.2 and let uh be the
IFE solution of discrete variational problem (5.2). Further assume that there is a
constant C(u) > 0 such that∥∥∇g(u− T−1

h uh)
∥∥

0,M ≥ C(u)h. (6.3)

Then it holds that

| ηh∥∥Th∇g(u− T−1
h uh)

∥∥
0,Mh

− 1| . hρ. (6.4)

Proof. It follows from Theorem 5.2, (6.3), and the triangle inequality.
Remark 6.1. Theorem 6.1 implies that (6.1) (or (6.2)) is an asymptotically

exact a posteriori error estimator for surface finite element methods.
11



7. Numerical Results. In this section, we present numerical examples to demon-
strate the superconvergence property of the proposed gradient recovery operators and
make a comparison with existing gradient recovery operators. The first example is to
show the superconvergence results of the proposed gradient recovery operators even
though the element patch is not O(h2)-symmetric. The second one is to compare
the results on a more complicated surface, and to demonstrate the superiority of
the PPPR method for surfaces with high curvature. The last two are to show the
asymptotic exactness of the recovery-based a posterior error estimator introduced in
Section 6. Some of our numerical tests are performed based on MATLAB package
iFEM [6]. Except for the first example, the initial meshes for the other three exam-
ples are generated using the three-dimensional surface mesh generation module of the
Computational Geometry Algorithms Library [29].

Let GSAh , GWA
h , and GZZh be recovery operators by simple averaging, weighted

averaging, and Zienkiewicz-Zhu schemes on tangent planes [30], respectively. Note we
use the exact normal vectors for GZZh in the numerical examples. We denote G1,h,
G2,h, and Ga1,h to be the recovery operators given by Algorithm 1, Algorithm 2 and
Algorithm 1 with approximations of normal vectors, respectively. The approximating
normal vectors are computed by weighted averaging for the tests with Ga1,h in our
examples, which are also used to implement Algorithm 2 to construct the local para-
metric domains Ωi. Another remark is that we use the function value preserving skill
in the PPPR G2,h, but not for G1,h. For the reason of making comparison, we define:

De = ‖Th∇gu−∇ghuh‖0,Mh
, DeI = ‖∇ghuI −∇ghuh‖0,Mh

,

Der1 = ‖Th∇gu−G1,huh‖0,Mh
, Der2 = ‖Th∇gu−G2,huh‖0,Mh

,

Der3 =
∥∥Th∇gu−Ga1,huh∥∥0,Mh

, DeSA =
∥∥Th∇gu−GSAh uh

∥∥
0,Mh

,

DeWA =
∥∥Th∇gu−GWA

h uh
∥∥

0,Mh
, DeZZ =

∥∥Th∇gu−GZZh uh
∥∥

0,Mh
.

where uh is the finite element solution, u is the analytical solution and uI is the
interpolation of u at the nodal points xi.

In Numerical Example 2, we shall compare the discrete maximal error of the above
six discrete gradient recovery methods. For that reason, we introduce the following
notations

Der10 = ‖Th∇gu−G1,huh‖0,∞,Mh
, Der20 = ‖Th∇gu−G2,huh‖0,∞,Mh

,

Der30 =
∥∥Th∇gu−Ga1,huh∥∥0,∞,Mh

, DeSA0 =
∥∥Th∇gu−GSAh uh

∥∥
0,∞,Mh

,

DeWA
0 =

∥∥Th∇gu−GWA
h uh

∥∥
0,∞,Mh

, DeZZ0 =
∥∥Th∇gu−GZZh uh

∥∥
0,∞,Mh

.

where ‖ · ‖0,∞,Mh
means the maximum absolute value at all vertices.

In the following tables, all convergence rates are listed with respect to the degree
of freedom(DOF). Noticing Dof ≈ h−2, the corresponding convergence rates with
respect to the mesh size h are double of what we present in the tables.

7.1. Numerical Example 1. Our first example is to consider Laplace-Beltrami
equation on a torus surface. The right hand function f is chosen to fit the exact
solution u(x, y, z) = x− y. The signed distance function of torus surface is

d(x, y, z) =

√
(4−

√
x2 + y2)2 + z2 − 1. (7.1)

12



(a) (b)

Fig. 7.1: Numerical Solution on Torus Surface: (a) Mesh; (b) Solution.

To construct a series meshes on torus without O(h2) symmetric property of their
element patches, we firstly make a series of uniform meshes of Chevron pattern and
map the mesh onto the torus. Figure 7.1 plots the uniform mesh with 800 Dof and
the corresponding finite element solution.

Table 7.1 lists the numerical results. As expected, H1 error of finite element
solution is of O(h). The generated uniform meshes satisfy the O(h2σ) condition. For
that reason, O(h2) supercloseness for DeI is observed. Concerning the convergence
of recovered gradients, both the recovered gradient by PPR with exact normal field
and by the PPPR superconverges have a superconvergence rate of order O(h2); while
the recovered gradient using PPR with recovered normal field and the other three
methods in [30] only converge at the optimal rate O(h).

Table 7.1: Numerical Results for equation (5.1) on torus surface.

Dof De order DeI order Der1 Order Der2 order
200 2.52e+00 – 9.43e-01 – 1.50e+00 – 1.59e+00 –
800 1.26e+00 0.50 2.65e-01 0.92 4.12e-01 0.93 4.37e-01 0.93
3200 6.29e-01 0.50 6.92e-02 0.97 1.06e-01 0.98 1.13e-01 0.98
12800 3.14e-01 0.50 1.75e-02 0.99 2.67e-02 0.99 2.84e-02 0.99
51200 1.57e-01 0.50 4.40e-03 1.00 6.70e-03 1.00 7.12e-03 1.00
204800 7.86e-02 0.50 1.10e-03 1.00 1.67e-03 1.00 1.78e-03 1.00
819200 3.93e-02 0.50 2.75e-04 1.00 4.19e-04 1.00 4.45e-04 1.00
3276800 1.97e-02 0.50 6.88e-05 1.00 1.05e-04 1.00 1.11e-04 1.00
Dof Der3 order DeSA order DeWA Order DeZZ order
200 1.52e+00 – 2.27e+00 – 2.28e+00 – 2.27e+00 –
800 4.74e-01 0.84 7.22e-01 0.83 7.25e-01 0.83 6.91e-01 0.86
3200 1.68e-01 0.75 2.48e-01 0.77 2.49e-01 0.77 2.19e-01 0.83
12800 7.18e-02 0.61 1.03e-01 0.63 1.03e-01 0.63 8.39e-02 0.69
51200 3.42e-02 0.54 4.86e-02 0.54 4.86e-02 0.54 3.80e-02 0.57
204800 1.69e-02 0.51 2.39e-02 0.51 2.39e-02 0.51 1.84e-02 0.52
819200 8.40e-03 0.50 1.19e-02 0.50 1.19e-02 0.50 9.16e-03 0.51
3276800 4.20e-03 0.50 5.94e-03 0.50 5.94e-03 0.50 4.57e-03 0.50
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7.2. Numerical Example 2. In this example, we take an emblematical surface
[18] which contains high curvature features. It can be represented as the zero level of
the following level set function

Φ(x) =
1

4
x2

1 + x2
2 +

4x2
3

(1 + 1
2 sin(πx1))2

− 1.

We consider the Laplace-Beltrami equation (2.5) with exact solution u = x1x2. The
right-hand side function f is computed from u.

Figure 7.2b shows the finite element solution uh on Delaunay mesh, see 7.2a,
with 4606 Dofs. The numerical results is reported in Table 7.2. From the table,
we clearly see that De converges at the optimal rate O(h) and DeI converges at
a superconvergent rate O(h2). As demonstrated in [7], some regions of the surface
are with significant high curvature. Due to the existence of these area, only sub-
superconvergence rate of order O(h1.8) is observed for PPR with approximated normal
field and the other three methods in [30]. In contrast, the O(h2) superconvergence
rate can be observed in the PPR with exact normal field and in the PPPR method.
In order to look more clearly into the relations between the recovery accuracy and
the high curvature of a surface, we add another set of comparison in this example. In
our numerical tests, we observed that the maximal recovery errors always happened
at the area of the meshes generated from highest curvature surface regions. We plot
a case example of the distribution of error function |Gh,r2uh − ∇gu| in Figure 7.2c.
Table 7.3 reports the maximal discrete errors of all the above six gradient recovery
methods, in which PPPR method is the only one to achieve the superconvergence rate
of O(h2) asymptotically in the discrete maximal norm. This gives the evidence to our
statement in Remark 4.3 that PPPR is relatively curvature stable in comparing with
the other methods. At that point, we can draw the conclusion that PPPR is the best
one with respect to arbitrary meshes and meshes generated by high curvature surfaces.
Thus, in the following two examples, we shall only consider the PPPR method.

Table 7.2: Numerical Results for equation (5.1) on a general surface

Dof De order DeI order Der1 Order Der2 order
1153 5.46e-01 – 2.78e-01 – 4.77e-01 – 3.34e-01 –
4606 2.85e-01 0.47 1.18e-01 0.62 2.01e-01 0.62 1.29e-01 0.69
18418 1.40e-01 0.51 3.45e-02 0.89 6.58e-02 0.81 4.38e-02 0.78
73666 6.97e-02 0.50 9.86e-03 0.90 1.97e-02 0.87 1.28e-02 0.89
294658 3.48e-02 0.50 2.58e-03 0.97 5.33e-03 0.95 3.40e-03 0.96
1178626 1.74e-02 0.50 6.57e-04 0.99 1.37e-03 0.98 8.68e-04 0.99
4714498 8.70e-03 0.50 1.66e-04 0.99 3.46e-04 0.99 2.18e-04 1.00
Dof Der3 order DeSA order DeWA Order DeZZ order
1153 4.71e-01 – 4.83e-01 – 4.86e-01 – 4.95e-01 –
4606 1.98e-01 0.62 2.26e-01 0.55 2.30e-01 0.54 2.18e-01 0.59
18418 6.63e-02 0.79 8.30e-02 0.72 8.59e-02 0.71 7.45e-02 0.78
73666 2.06e-02 0.84 2.69e-02 0.81 2.82e-02 0.80 2.33e-02 0.84
294658 5.87e-03 0.91 7.72e-03 0.90 8.27e-03 0.89 6.60e-03 0.91
1178626 1.64e-03 0.92 2.14e-03 0.93 2.36e-03 0.90 1.83e-03 0.93
4714498 4.70e-04 0.90 6.04e-04 0.91 6.97e-04 0.88 5.22e-04 0.90
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(a) Mesh

(b) Solution

(c) Error distribution of recovered gradient

Fig. 7.2: Numerical Solution on general surface.

7.3. Numerical Example 3. In the example, we consider a benchmark problem
for adaptive finite element method for Laplace-Beltrami equation on the sphere [7,11,
12]. We choose the right hand side function f such that he exact solution in spherical
coordinate is given by

u = sinλ(θ) sin(ψ).

In case of λ < 1, it easy to see that the solution u has two singularity points at north
and south poles and the solution u is barely in H1(M). In fact, u ∈ H1+λ(M).

To obtain optimal convergence rate, adaptive finite element method (AFEM) is
used. Different from existing methods in the literature, recovery-based a posteriori
error estimator is adopted. We start with the initial mesh given as in Fig 7.3a. The
mesh is adaptively refined using the Dor̈fler [15] marking strategy with parameter
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Table 7.3: Comparison of discrete maximal norms of gradient recovery methods on a
general surface

Dof Der10 order Der20 order Der30 Order
1153 9.70e-01 – 7.93e-01 – 8.73e-01 –
4606 5.43e-01 0.42 3.26e-01 0.64 4.77e-01 0.44
18418 1.92e-01 0.75 1.09e-01 0.79 2.22e-01 0.55
73666 8.57e-02 0.58 5.18e-02 0.54 9.16e-02 0.64
294658 2.50e-02 0.89 1.40e-02 0.94 3.51e-02 0.69
1178626 7.80e-03 0.84 3.59e-03 0.98 1.59e-02 0.57
4714498 3.56e-03 0.57 9.03e-04 0.99 7.57e-03 0.53
Dof DeSA0 order DeWA

0 order DeZZ0 Order
1153 7.16e-01 – 7.09e-01 – 8.13e-01 –
4606 5.09e-01 0.25 5.36e-01 0.20 5.83e-01 0.24
18418 2.73e-01 0.45 3.05e-01 0.41 2.65e-01 0.57
73666 1.42e-01 0.47 1.47e-01 0.53 1.11e-01 0.63
294658 5.66e-02 0.66 6.08e-02 0.64 3.67e-02 0.80
1178626 2.39e-02 0.62 2.75e-02 0.57 1.62e-02 0.59
4714498 1.12e-02 0.55 1.31e-02 0.54 7.63e-03 0.54

equal to 0.3. Fig 7.3b plots the mesh after the 18 adaptive refinement steps. Clearly,
the mesh successfully resolves the singularities. The numerical errors are displayed
in Fig 7.4a. As expected, optimal convergence rate for H1 error can be observed. In
addition, we observe that the recovery is superconvergent to the exact gradient at a
rate of O(h2).

To test the performance of our new recovery-based a posterior error estimator for
Laplace-Beltrami problem, the effectivity index κ is used to measure the quality of an
error estimator [1, 3], which is defined by the ratio between the estimated error and
the true error

κ =

∥∥Ghuh − Th∇gT−1
h uh

∥∥
0,Mh∥∥Th∇g(u− T−1

h uh)
∥∥

0,Mh

(7.2)

The effectivity index is plotted in Fig 7.4b . We see that κ converges asymptotically to
1 which indicates the posteriori error estimator (6.1)or (6.2) is asymptotically exact.

7.4. Numerical Example 4. In this example, we consider the following Laplace-
Beltrami type equation on Dziuk surface as in [8]:

−∆g + u = f, on Γ,

where Γ =
{
x ∈ R3 : (x1 − x2

3)2 + x2
2 + x2

3 = 1
}
. f is chosen to fit the exact solution

u(x, y, z) = e
1

1.85−(x−0.2)2 sin(y).

Note that the solution has an exponential peak. To track this phenomena, we adopt
AFEM with an initial mesh graphed in Fig 7.5a. Fig 7.5b shows the adaptive refined
mesh. We would like to point out that the mesh is refined not only around the
exponential peak but also at the high curvature areas.
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(a) (b)

Fig. 7.3: Meshes for Example 3: (a) Initial mesh; (b) Adaptive refined mesh.
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Fig. 7.4: Numerical Result for Example 3: (a) Errors; (b) Effective index.

Fig 7.6a displays the numerical errors. It demonstrates the optimal convergence
rate in H1 norm and a superconvergence rate for the recovered gradient. The effective
index is showed in Fig 7.6b, which converges to 1 quickly after the first few iterations.
Again, it indicates the error estimator (6.1) (or (6.2) ) is asymptotically exact.

8. Conclusion. In this paper, we have proposed a curvature stable gradient
recovery method (PPPR) for data defined on manifolds. In comparing with existing
methods for data on surfaces in the literature, cf. [16, 30], the proposed method has
several improvements: The first highlight is that it does not require the exact surfaces,
which makes it a realistic and robust method for practical problems; Second, it does
not need the element patch to be O(h2) symmetric to achieve superconvergence.
Third, it is the most curvature stable methods in comparing with the existing methods.
Aside from that, we have evolved the traditional PPR method (for planar problems)
to function value preserving at the mean time. By testing with some benchmark
examples, it is quite evident that the proposed method numerically performs better
than the methods in the state of the art. We have also shown the capability of the
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(a) (b)

Fig. 7.5: Meshes for Example 4: (a) Initial mesh; (b) Adaptive refined mesh.
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Fig. 7.6: Numerical Result for Example 4: (a) Errors; (b) Effective index.

recovery operator for constructing a posterior error estimator. Even though we only
develop the methods for linear finite element methods on triangulated meshes, the
idea should be applicable to higher order FEM on more accurate approximations of
surfaces, e.g. piece-wise polynomial surfaces, B-splines or NURBUS. We leave this as
a potential work for future.

Gradient recovery has other applications, like enhancing eigenvalues, pre-processing
data in image science, simplifying higher order discretization of PDEs, or even de-
signing new numerical methods for higher order PDEs, and so on. It would also be
interesting to further investigate the full usage of the PPPR method for problems
with solutions defined on a manifold domain.
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Appendix A. Proof of Lemma 2.1.
Proof. In general, there are infinitely many isomorphic parametrizations for a

given patch S ⊂M. Let us pick arbitrarily two of them, which are denoted by

r : Ω→ S and s : Ωs → S ,

respectively, where Ω and Ωs are planar parameter domains, then there exist

t : Ω→ Ωs

to be a bijective, differentiable mapping, such that r = s ◦ t. That means for an
arbitrary but fixed position x ∈ S, we have ξ ∈ Ω and t(ξ) = ζ, such that

x = s(ζ) = s(t(ξ)) = r(ξ).

Then we have

∂r(ξ) = ∂s(t(ξ))∂t(ξ),

and consequently, for every function v : S → R,

v ◦ r : Ω→ R and v ◦ s : Ωs → R,

we have

∇gv(r(ξ)) ∂r(ξ) = ∇(v ◦ r)(ξ) and ∇gv(s(ζ)) ∂s(ζ) = ∇(v ◦ s)(ζ). (A.1)

Using chain rule on both sides of the former equation of (A.1), then we get

∇gv(s(ζ)) ∂s(t(ξ))∂t(ξ) = ∂(v ◦ s(t(ξ)))∂t(ξ)⇒ ∇gv(s(ζ)) ∂s(t(ξ)) = ∂(v ◦ s(t(ξ))),

which gives the latter equation in (A.1) since ∂t(ξ) is non-degenerate. Using the
same process but consider t−1 : Ωs → Ω, we can show the reverse implication. Thus,
we have shown that any two arbitrary parameterizations r and s lead to the same
gradient values at same positions.
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