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Abstract

This paper is concerned with the inverse source problem for the transport equation with external force. 
We show that both direct and inverse problems are uniquely solvable for generic absorption and scattering 
coefficients. In particular, for inverse problems, generic injectivity and a stability estimate of the source are 
derived. The analysis employs the Fredholm theorem and the Santalo’s formula.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

We study the inverse source problem for the transport equation with an external force. Let �
be an open bounded domain in Rn for n ≥ 2 with smooth boundary ∂�. We consider a station-
ary (i.e. time-independent) transport equation on � for a distribution function u depending on 
position x and velocity θ :

θ · ∇xu(x, θ) + F(x, θ) · ∇θu(x, θ) + σ(x, θ)u(x, θ) = K(u)(x, θ) + f (x), (1.1)
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where σ is the attenuation coefficient, which characterizes the total absorption of particles, and 
f is the source term. The acceleration F describes the total external force acting on the particles. 
Moreover, the scattering operator K is defined by

K(u)(x, θ) :=
∫
Vx

k(x, θ, θ ′)u(x, θ ′) dθ ′ for θ ∈ Vx, (1.2)

where the kernel k(x, θ, θ ′) characterizes that the particle with the velocity θ ′ is scattered into the 
velocity θ at the position x. Here {Vx : x ∈ �} is a collection of subsets of Rn \ {0}, depending 
smoothly on x, to be defined later.

In this paper, we are interested in the case that the external force F has the following form

F(x, θ) = −∇xϕ(x) + Y(x) θ, (1.3)

where ϕ(x) is a smooth scalar potential and Y(x) a smooth n × n skew-symmetric matrix func-
tion depending only on the spatial variable (thus can be viewed as a 1-1 tensor). The term Y(x) θ
can be understood as the product of a matrix with a column vector θ . For example, in electro-
magnetism, −∇xϕ and Y represent the electric and magnetic fields respectively, and F is the 
Lorentz force induced by the electromagnetic field. In the three-dimensional setting, the degree 
of freedom of Y is 3, it is easy to see that Yθ = θ × B for some vector function B . Here ‘×’ is 
the cross-product in R3. Therefore Y and B are equivalent in three space dimensions, with B the 
common notation for the magnetic field.

Notice that the transport operator θ · ∇x + F(x, θ) · ∇θ , with the external force F defined by 
(1.3), induces a Hamiltonian flow with the Hamiltonian function (or energy) 1

2 |θ |2 + ϕ(x). We 
define the sphere bundle over � of energy τ > max{maxx∈� ϕ(x), 0} by

Sτ� := {(x, θ) ∈ � × (Rn \ {0}) : 1

2
|θ |2 + ϕ(x) = τ }

with its boundary ∂Sτ�. The fiber of the bundle at x ∈ � is denoted by Sτ
x�, which is exactly 

the set Vx in the definition of the scattering operator K , see (1.2). Hence the transport equation 
(1.1) stays on the bundle Sτ�. Let ∂+Sτ� and ∂−Sτ� be the outgoing and incoming boundaries 
respectively and they are defined by

∂±Sτ� := {(x, θ) ∈ ∂Sτ� : x ∈ ∂�, ±n(x) · θ > 0},

where n(x) is the unit outer normal vector at x ∈ ∂�. We also denote

Sτ�2 := {(x, θ, θ ′) : x ∈ �, θ, θ ′ ∈ Sτ
x �}.

See Section 2.1 for more definitions and notations.
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1.1. Inverse problems and related results

Consider the transport equation (1.1) with trivial condition on the incoming boundary{
θ · ∇xu(x, θ) + F(x, θ) · ∇θu(x, θ) + σ(x, θ)u(x, θ) = K(u)(x, θ) + f (x) in Sτ�,

u(x, θ) = 0 on ∂−Sτ�.

(1.4)

The inverse problem we consider here is to recover the source term f from boundary measure-
ments A : L2(�) → L2(∂+Sτ�, dξ) modeled by

Af (x, θ) := u|∂+Sτ � for all (x, θ) ∈ ∂+Sτ�,

where dξ(x, θ) = |θ · n(x)|dμ(x)dθ and dμ(x) is Lebesgue measure on ∂�.
Before describing our main results, we briefly introduce some related studies. When there 

is no external force in (1.4), i.e. F ≡ 0 (so ϕ = c for some constant c, Y = 0), the particles 
travel along straight lines. The injectivity of the inverse source problem in the trivial geometry 
is known in the case of small scattering kernel k [4,8] and generic pairs (σ, k) [23]. Recent 
studies on Riemannian manifolds (non-trivial geometry) can be found in [3,19–21]. For inverse 
source problems for time-dependent transport equations by applying Carleman estimates, see for 
instance [9–12] and the references therein.

If there is no scattering as well, i.e. F ≡ 0 and k ≡ 0 in (1.2), then the inverse source problem 
is equivalent to the invertibility of the Euclidean attenuated X-ray transform. The corresponding 
boundary measurement A can be expressed as an integral

Iσ f (x, θ)|∂+(�×Sn−1) :=
0∫

−∞
e− ∫ 0

s σ (x+tθ,θ)dtf (x + sθ) ds for all (x, θ) ∈ ∂+(� × Sn−1).

(1.5)

Notice that in this case, � × Sn−1 = S1/2+c� since the energy is |θ |2/2 + ϕ = 1/2 + c. For 
attenuation coefficient σ depending on x only, it is known that Iσ is injective with explicit inver-
sion formulas [1,5,13–15]. If the attenuation coefficient σ depends on both x and the velocity, 
i.e. σ = σ(x, θ), then injectivity results of Iσ can be found in e.g. [7,16,26].

When F 
= 0, under the influence of the acceleration field, the trajectories associated with 
the transport operator are not straight lines in general (specifically they are curves), and the 
velocities along such curves are not constant vectors. Therefore, in this scenario Iσf corresponds 
to attenuated X-ray transforms along a family of curves instead of straight lines, see [7] and [25, 
Appendix].

1.2. Main results

Throughout this paper, we fix the constant τ and extend the source f from � to the whole 
space Rn by 0. This ensures that the line integral domain can be taken over the whole real line R
without changing the value.

To study inverse problem, let �1 be another open bounded domain in Rn so that � ⊂ � ⊂ �1. 
We extend the pair (σ, k), the potential ϕ and Y to �1 with the same regularity, and such that 
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max�1
ϕ < τ as well. We choose and fix such an extension as a continuous operator in those 

spaces. Define the operator A1 : L2(�1) → L2(∂+Sτ�1, dξ) in the same way as A. In particular, 
we are interested in those f ∈ L2(�1) supported in �, which are equivalent to elements of 
L2(�). Therefore, the restriction A1 : L2(�) → L2(∂+Sτ�1, dξ) is also well-defined.

We also impose a convexity condition for the boundary ∂� with respect to the underlying dy-
namical flow (or the external force). Note that the trajectories of the particles satisfy the following 
Newton’s equation

γ̈ = F(γ, γ̇ ) = −∇xϕ(γ ) + Y(γ ) γ̇ . (1.6)

We denote the solution of (1.6) with initial value (x, θ) ∈ Sτ� by γx,θ . See Section 2.1 for more 
details.

Definition 1.1. Let x ∈ ∂�, we say that the boundary ∂� is strictly convex at x with respect to 
the external force F if for any θ ∈ Sτ

x � tangent to ∂�, there exists δ > 0 such that γx,θ (t) /∈ �

for t ∈ (−δ, δ) \ {0}. Moreover, the boundary ∂� is said to be strictly convex with respect to F
if it is strictly convex with respect to F at all x ∈ ∂�.

When F ≡ 0, the above definition is consistent with the usual definition of a strictly convex 
domain. We will assume that both ∂� and ∂�1 are strictly convex with respect to F . Notice that 
this is not an essential assumption, one can always push away the boundary, and manipulate the 
extensions of ϕ and k, to make it strictly convex with respect to F .

We say that the family of curves defined by (1.6) is non-trapping if for any (x, θ) ∈ Sτ�, the 
curve γ = γx,θ exits the domain � in finite time in both the forward and backward directions. 
In other words, the travel time functions �±, defined in (2.3), satisfy |�±(x, θ)| < ∞ for all 
(x, θ) ∈ Sτ�.

Our main result is about the uniqueness and stability of the inverse source problem for generic 
(σ, k).

Theorem 1.1 (Uniqueness and stability estimate). Let � be an open bounded domain in Rn for 
n ≥ 2 with smooth strictly convex boundary ∂� with respect to F . Suppose that the trajectories 
defined by (1.6) form a family of non-trapping curves. Let f ∈ L2(�). Then there exists an open 
and dense set V of pairs

(σ (x, θ), k(x, θ, θ ′)) ∈ C2(Sτ�) × C2(Sτ�
2
) (1.7)

including a neighborhood of (0, 0) such that for each (σ, k) in the set V , the direct problem (1.4)
is well-posed. Moreover, suppose that the attenuated X-ray transform Iσ,F (see (1.9)) is injective, 
and k(x, θ, θ ′) = κ1(x, θ)κ2(x, θ ′), then the following results hold:

(1) the map A1 is injective on L2(�);
(2) the stability estimate

‖f ‖L2(�) ≤ C‖A∗
1A1f ‖H 1(�1)

(1.8)

holds for all f ∈ L2(�), where C > 0 is a constant and locally uniform in (σ, k).
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Remark 1.1. In the above theorem, we assume that the attenuated ray transform Iσ,F , along 
a family of curves determined by F (or by ϕ and Y ), is injective. This does not affect much 
the generality of our result, as Iσ,F is injective for generic ϕ and Y , see [7]. In dimension 3 
and higher, Iσ,F is injective if the family of curves satisfies a global foliation condition [25, 
Appendix].

Since the dynamics of a particle is impacted by both external force F and the scattering term 
K , its corresponding boundary measurement A1 is of the form Iσ,F + L. Here

Iσ,F f (x, θ)|∂+Sτ � :=
0∫

−∞
e− ∫ 0

s σ (γx,θ (t),γ̇x,θ (t))dtf (γx,θ (s)) ds, (x, θ) ∈ ∂+Sτ� (1.9)

corresponds to attenuated X-ray transforms along a family of curves γx,θ with velocities γ̇x,θ

and L is a compact operator, contributed from the scattering effect. Therefore, the normal oper-
ator A∗

1A1 is equal to I ∗
σ,F Iσ,F + L with a compact operator L. See Section 3 for the detailed 

definitions of compact operators L and L. Note that for the attenuated X-ray transform Iσ,F , its 
generic injectivity and stability (similar to Theorem 1.1) are known due to [7], where the result 
even holds for a general family of curves. Since the operator A∗

1A1 is a compact perturbation 
of I ∗

σ,F Iσ,F , we then apply the analytic Fredholm theorem [17] to establish the injectivity and 
stability of the operator A1, as well as the well-posedness of the forward problem, for generic 
pairs (σ, k).

The remaining part of the paper is organized as follows. In Section 2, we formulate the 
trajectories of particles under the influence of the external force and introduce notations and 
preliminary results. We also study the forward problem for the transport equation. In Section 3, 
we discuss the determination of the source. We derive uniqueness and stability estimates for a 
generic class of absorption and scattering coefficients by solving a Fredholm equation related to 
the normal operator.

2. The forward problem

In this section, we start by introducing notations and spaces. We also formulate several lem-
mas and propositions used later to prove the well-posedness result in Section 2.3.

2.1. Notations

The trajectory (X, ) of the flow, associated to the transport operator θ · ∇x +F(x, θ) · ∇θ , is 
characterized by the following system:

⎧⎪⎪⎨
⎪⎪⎩

Ẋ(s) = (s)

̇(s) = −∇xϕ(X(s)) + Y(X(s))

X(0) = x

(0) = θ,

(2.1)

with initial condition (x, θ) at initial time s = 0. We introduce the energy
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H(x, θ) = 1

2
|θ |2 + ϕ(x),

and note that this energy H is conserved, that is,

H(X(s),(s)) = H(x, θ).

In fact, by taking the derivative with respect to s on the energy H(X(s), (s)) = 1
2 |(s)|2 +

ϕ(X(s)), along any fixed flow, we have

d

ds
H(X(s),(s)) = (s) · ̇(s) + ∇xϕ(X(s))Ẋ(s) = 0

due to (2.1) and the fact that Y(x) θ is orthogonal to θ (that is, Y(x) θ · θ = 0). This implies that 
along the flow the energy H(X(s), (s)) is a constant determined by the given initial data.

Therefore, from now on, we consider the energy level H is a fixed positive constant along 
each flow, that is,

H(x, θ) = 1

2
|θ |2 + ϕ(x) ≡ τ (2.2)

for some constant τ > 0 and also assume that max� ϕ < τ . Then (2.2) yields that for each x ∈ �, 
its velocity indeed lies on a sphere with the radius depending on x only. We can also express the 
velocity as a function of x and v:

θ = p(x)v,

where v ∈ Sn−1, the unit sphere, and the radius p(x) := √
2(τ − ϕ(x)). We define the sphere 

bundle over � with a fixed energy by

Sτ� := {(x, θ) ∈ � × (Rn \ {0}) : H(x, θ) = τ }

and its boundary by

∂Sτ� := {(x, θ) ∈ ∂� × (Rn \ {0}) : H(x, θ) = τ }.

Moreover, we denote the fiber of the bundle at each point x ∈ � by

Sτ
x � := {θ = p(x)v : v ∈ Sn−1}.

Recall that the outgoing and incoming boundaries are defined through

∂±Sτ� := {(x, θ) ∈ ∂Sτ� : x ∈ ∂�, ±n(x) · θ > 0},

where n(x) is the unit outer normal vector at x ∈ ∂�.
For x ∈ � and θ 
= 0, the curve X(s) satisfying the initial conditions X(0) = x and Ẋ(0) = θ

is defined on the interval [�−(x, θ), �+(x, θ)], where two travel time functions
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�± : � × (Rn \ {0}) → R (2.3)

are determined by X(�±(x, θ)) ∈ ∂�. In particular, they satisfy ±�±(x, θ) ≥ 0 and �+(x,

θ)|∂+Sτ � = �−(x, θ)|∂−Sτ � = 0.

2.2. Preliminary results

To emphasize the trajectory’s dependence on the initial data, from now on we denote solutions 
to (2.1) with initial data (x, θ) by

(γx,θ (s), γ̇x,θ (s)).

We define the following two operators

T1 := θ · ∇x + F(x, θ) · ∇θ + σ(x, θ),

and

T := θ · ∇x + F(x, θ) · ∇θ + σ(x, θ) − K.

Then T = T1 − K . The problem (1.4) can be rewritten as

(T1 − K)u = f, u|∂−Sτ � = 0. (2.4)

At this point, we assume that f depends on the velocity as well, i.e. f = f (x, θ). Applying T −1
1

to (2.4), we have

(Id − T −1
1 K)u = T −1

1 f,

where Id denotes the identity operator and the operator T −1
1 is defined by

T −1
1 f (x, θ) :=

0∫
−∞

e− ∫ 0
s σ (γx,θ (t),γ̇x,θ (t))dtf (γx,θ (s), γ̇x,θ (s)) ds for all (x, θ) ∈ Sτ�.

To simplify the expression, we denote the exponential term in the above integral by

W(s, x, θ) := e− ∫ 0
s σ (γx,θ (t),γ̇x,θ (t))dt .

If the operator Id −T −1
1 K is invertible, then the problem (2.4) is uniquely solvable. This implies 

that there exists a unique solution of the problem (2.4) of the form

u = T −1f = (Id − T −1
1 K)−1T −1

1 f, (2.5)

and, moreover, it can also be written as
734
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u = T −1
1 (Id − KT −1

1 )−1f.

Therefore, the study of the forward problem here is reduced to showing that the operator Id −
KT −1

1 is invertible. For this purpose, we will study KT −1
1 K instead since KT −1

1 is not compact 
on L2(Sτ�) due to insufficient integrals. This is motivated by the following observation. The 
invertibility of

Id − (KT −1
1 )2 = (Id − KT −1

1 )(Id + KT −1
1 )

implies the invertibility of Id − KT −1
1 , see [23] or Section 2.3 for detailed discussion.

The compactness of the operator KT −1
1 K on L2(Sτ�) is established in Proposition 2.1, 

which is built on the following two lemmas.

Lemma 2.1. Suppose that (σ, k) satisfy (1.7). For any f ∈ L2(Sτ�), the operator KT −1
1 is 

decomposed into

KT −1
1 f = K̂sf + K̂rf,

where K̂s is a singular integral operator defined in (2.7) and K̂r is a smooth integral operator 
defined in (2.6).

Proof. Let χ : R → [0, 1] be a smooth cutoff function satisfying χ = 1 near s = 0 and its com-
pact support supp(χ) is sufficiently small. We split the operator KT −1

1 into the following two 
operators:

[KT −1
1 ]f =: K̂sf + K̂rf,

where we denote

K̂sf := [KT −1
1 ](χf ) and K̂rf := [KT −1

1 ]((1 − χ)f ).

Performing the change of variables θ ′ = p(x)v with p(x) > 0 for v ∈ Sn−1 gives that

[KT −1
1 ]f (x, θ) =

∫
Sτ

x �

k(x, θ, θ ′)
0∫

−∞
W(s, x, θ ′)f (γx,θ ′(s), γ̇x,θ ′(s)) dsdθ ′

=
∫

Sn−1

k(x, θ,p(x)v)

0∫
−∞

W(s, x,p(x)v)f (γx,p(x)v(s), γ̇x,p(x)v(s))p(x)n−1dsdv.

For any s0 
= 0, the map (s, θ ′) �→ y = γx,θ ′(s) is a diffeomorphism from a neighborhood of 
(s0, θ0) to its image. However, when s0 = 0, say (s ∈ (−ε, 0] for small ε > 0), the map (s, θ ′) �→
y = γx,θ ′(s) has the Jacobian J̃ vanishing at s = 0. This implies that after performing the change 
of variables (s, θ ′) �→ y, the operator K̂r has a smooth kernel while K̂s is the operator with a 
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singular kernel. More precisely, if we perform the change of variables y = γx,pv(s) in K̂rf , then 
we obtain the smooth operator

K̂rf (x, θ)

=
∫
�

k(x, θ,pv)(1 − χ(s))W(s, x,pv)f (y, γ̇x,p(x)v(s))J̃
−1(x, s, v)|s=s(y),v=v(y) p(x)n−1dy.

(2.6)

To deal with the singular kernel in K̂s , instead of taking the change of variable as above, we 
take the following procedures. We first define the function

m(s,pv;x) := γx,pv(s) − x

s
.

Then m is smooth for |s| < ε and we obtain

γx,pv(s) − x = sm(s,pv;x), m(0,pv;x) = pv,

where we used the Taylor’s polynomial of γx,pv at s = 0 and ds |s=0m(s, pv; x) = γ̇x,pv(0) = pv.
Next, we introduce the new variables (r, w) ∈R × Sn−1 defined by

r = s|m(s,pv;w)|, w = m(s,pv;x)

|m(s,pv;x)| for s ≤ 0.

These new variables can be viewed as polar coordinates for γx,pv(s) −x = rw in which we allow 
r to be negative. Moreover, (r, w) are smooth for ε small enough. For the change of variables 
(s, v) �→ (r, w), we denote its Jacobian by

J (x, s, v) := det
∂(r,w)

∂(s, v)

= 0.

To analyze the behavior of J near s = 0, a direct computation gives

∂sr|s=0 = |m(0,pv;x)| = p(x), ∂vr|s=0 = 0.

Moreover, since m(0, pv; x) = γ̇x,pv(0) = pv for v ∈ Sn−1 gives

w(0,pv; s) = m(0,pv;x)

|m(0,pv;x)| = v,

from Taylor’s polynomial, we have

∂vw|s=0 = ∂v(v + ∂sw(0,pv;x)s + . . .)|s=0 = In,

the n × n identity matrix. This implies that the Jacobian satisfies

J |s=0 = p(x) 
= 0,
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and therefore the map (s, v) ∈R− ×Sn−1 �→ (r, w) ∈ R− ×Sn−1 is a local diffeomorphism from 
(−ε, 0] × Sn−1 to its image provided that ε > 0 is sufficiently small. Here we denote R− to be 
the set consisting of all negative points and the zero.

Note that we can always choose the support of χ to be sufficiently small. Combining this with 
the fact that J does not vanish near s = 0, we have

K̂sf (x, θ) =
∫

Sn−1

k(x, θ,pv)

0∫
−∞

χ(s)W(s, x,pv)J−1(x, s, v)

f (x + rw, γ̇x,p(x)v(s))|s=s(x,r,w),v=v(x,r,w) p(x)n−1 drdw.

Finally, the change of variables y = x + rw in K̂sf yields

K̂sf (x, θ) :=
∫
�

k1(x, y, θ)

|x − y|n−1 f (y, γ̇x,p(x)v(s))|s=s(x,|y−x|, y−x
|y−x| ),v=v(x,|y−x|, y−x

|y−x| )
p(x)n−1dy,

(2.7)

where

k1(x, y, θ) := k(x, θ,pv)χ(s)W(s, x,pv)J−1(x, s, v)|
s=s(x,|y−x|, y−x

|y−x| ),v=v(x,|y−x|, y−x
|y−x| )

. �
(2.8)

Remark 2.1. Since J |s=0 = p(x) 
= 0, J−1 is bounded from above and below by some positive 
constants near s = 0. Therefore, we have |k1| ≤ C for some constant C > 0.

We now introduce the operator � lifting a function from � to Sτ�, that is,

[�f ](x, θ) := f (x).

Then we have the following compact operator.

Lemma 2.2. The operator KT −1
1 � : L2(�) → L2(Sτ�) is compact.

Proof. We restrict f on the x variable only and then Lemma 2.1 leads to

[KT −1
1 �]f (x, θ) =: K̂s�f (x, θ) + K̂r�f (x, θ),

where K̂r� is a smooth operator and

K̂s�f (x, θ) :=
∫
�

k1(x, y, θ)

|x − y|n−1 f (y)p(x)n−1dy,

is a singular integral operator with k1 defined in (2.8). By the assumptions on k, σ , the func-
tion |k1(x, y, θ)p(x)n−1| is bounded from above by some positive constant. Following a similar 
argument as in the proof of Proposition B.2 implies that K̂s� is indeed a compact operator by 
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exhibiting it as a norm limit of compact operators with finite ranks. Therefore, together with the 
smoothness of the operator K̂r�, we conclude that KT −1

1 � is compact on L2(�). �
To close this subsection, we show the following result with the help of Lemma 2.1 and 

Lemma 2.2.

Proposition 2.1. The operator KT −1
1 K : L2(Sτ�) → L2(Sτ�) is compact.

Proof. Since K̂rK is a smooth operator, it is sufficient to show that K̂sK is compact. To achieve 
this, replacing f (y, γ̇x,p(x)v(s)) in K̂sf in (2.7) by

K(f )(y, γ̇x,p(x)v(s))|s=s(x,|y−x|, y−x
|y−x| ),v=v(x,|y−x|, y−x

|y−x| )

=
∫

Sτ
y �

k(y, γ̇x,p(x)v(s), θ
′)|

s=s(x,|y−x|, y−x
|y−x| ),v=v(x,|y−x|, y−x

|y−x| )
f (y, θ ′) dθ ′

=
∫

Sn−1

k(y, γ̇x,p(x)v(s),p(y)v′)|
s=s(x,|y−x|, y−x

|y−x| ),v=v(x,|y−x|, y−x
|y−x| )

f (y,p(y)v′)p(y)n−1 dv′,

we have

[K̂sKf ](x, θ) =
∫
�

∫
Sn−1

g(x, y, θ, v′)
|x − y|n−1 f (y,p(y)v′)p(y)n−1 dv′dy.

Here we denote

g(x, y, θ, v′) := k1(x, y, θ)k(y, γ̇x,p(x)v(s),p(y)v′)|
s=s(x,|y−x|, y−x

|y−x| ),v=v(x,|y−x|, y−x
|y−x| )

p(x)n−1,

which satisfies

|g(x, y, θ, v′)| ≤ C,

for some constant C > 0. By Proposition B.2, we conclude that K̂sK is compact. This completes 
the proof. �
2.3. The well-posedness result

Before showing the well-posedness result, we also need the following analytic Fredholm the-
orem from [17]. Let L (H ) denote the set of bounded linear operators on the Hilbert space 
H .

Proposition 2.2. [17, Theorem VI.14] Let D be an open connected subset of C. Let F : D →
L (H ) be an analytic operator-valued function such that F(λ) is compact for each λ ∈ D. Then 
one of the following statements holds: either

(1) (Id −F(λ))−1 exists for no λ ∈ D; or else
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(2) (Id − F(λ))−1 exists for all λ ∈ D \ S where S is a discrete subset of D. In this case, 
(Id − F(λ))−1 is meromorphic in D, analytic in D \ S, the residues at the poles are finite 
rank operators.

We are now ready to show that the problem under study is well-posed. Note that the following 
well-posedness result holds for f = f (x, θ).

Theorem 2.1 (Well-posedness result). There exists an open and dense set U of pairs (σ, k) ∈
C(Sτ�) × C(Sτ�

2
), including a neighborhood of (0, 0) so that for each (σ, k) in the set, the 

following statements hold:

(1) for any f ∈ L2(Sτ�), there exists a unique solution u ∈ L2(Sτ�) to the problem (1.4);
(2) A : L2(Sτ�) → L2(∂+Sτ�, dξ) is a bounded operator.

Here dξ(x, θ) := |n(x) · θ |dμ(x)dθ is the measure on ∂+Sτ� with dμ(x) the standard mea-
sure on ∂�.

Proof. (1) Following a similar argument and notations as in [23], we fix an arbitrary pair (σ, k), 
and consider

P(λ) = Id − (λKT −1
1 )2 = (Id − λKT −1

1 )(Id + λKT −1
1 ) in L2(Sτ�), λ ∈C.

Notice that (λKT −1
1 )2 = λ2KT −1

1 KT −1
1 is compact by Proposition 2.1 and the resolvent P(λ)−1

exists for |λ| � 1. By taking F(λ) = (λKT −1
1 )2 and D = C, we apply Proposition 2.2 to get that 

the resolvent P(λ)−1 exists for all but a discrete set S ⊂ C and it is meromorphic w.r.t. λ. In 
particular, this implies that the resolvent

(Id − λKT −1
1 )−1 = (Id + λKT −1

1 )P (λ)−1

exists for λ ∈ C \ S. This can be shown by analytic continuation in C \ S, which is an open 
connected set. Since (Id − λT −1

1 K)−1T −1
1 = T −1

1 (Id − λKT −1
1 )−1, the operator T −1 with k

replaced by λk in (2.5) exists and thus the solution to (1.4)

u = (Id − λT −1
1 K)−1T −1

1 f = T −1
1 (Id − λKT −1

1 )−1f

exists for any λ ∈C \S. This means that for (σ, λk) λ ∈ C \S, the solution u exists, which yields 
that the set U is dense in C(Sτ�) × C(Sτ�

2
).

To show this set U is open, we apply the standard perturbation arguments. We consider k for 
which Id − λKT −1

1 is invertible and k̃ is a small perturbation of k (k̃ is close to k in C(Sτ�
2
)), 

which leads to that the operator K̃ with kernel k̃ is close to K . Moreover, we take λ̃ a small 
perturbation of λ. Then the invertibility of Id − λKT −1

1 gives that

Id − λ̃K̃T −1
1 = Id − λKT −1

1 − λ(K̃ − K)T −1
1 + (λ − λ̃)K̃T −1

1

= (Id − λKT −1
1 )[Id − (Id − λKT −1

1 )−1(λ(K̃ − K)T −1
1 − (λ − λ̃)K̃T −1

1 )]
=: (Id − λKT −1)(Id − K�).
1
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When k̃ and λ̃ are sufficiently close to k and λ, respectively, the norm of the operator K� is 
going to be very small, which implies that Id − K� is invertible. Thus we can conclude that 
Id − λ̃K̃T −1

1 is invertible when k̃ is close to k and λ̃ is also close to λ. This shows that the set 
U is open. Hence we complete the proof of part (1).

(2) For f ∈ L2(Sτ�), from (1), we have that the transport solution u = (Id −T −1
1 K)−1T −1

1 f

is in L2(Sτ�). Then the generalized attenuated X-ray transform is

Af = B+T −1f = B+(Id − T −1
1 K)−1T −1

1 f = B+T −1
1 (Id − KT −1

1 )−1f,

where we denote

B+h := h|∂+Sτ �

and, in particular, (Id −KT −1
1 )−1f ∈ L2(Sτ�). Therefore, it is sufficient to show that B+T −1

1 :
L2(Sτ�) → L2(∂+Sτ�, dξ) is also bounded. To this end, we apply Hölder inequality and San-
talo’s formula (see Proposition A.1) to obtain

‖B+T −1
1 f ‖2

L2(∂+Sτ �,dξ)

=
∫

∂+Sτ �

|B+T −1
1 f (x, θ)|2dξ(x, θ)

≤ C

∫
∂+Sτ �

⎛
⎜⎝

0∫
�−(x,θ)

|f (γx,θ (s), γ̇x,θ (s))|ds

⎞
⎟⎠

2

dξ(x, θ)

≤ C( max
∂+Sτ �

|�−(x, θ)|)
∫

∂+Sτ �

0∫
�−(x,θ)

∣∣f (γx,θ (s), γ̇x,θ (s))
∣∣2

dsdξ(x, θ)

≤ C( max
∂+Sτ �

|�−(x, θ)|)
∫

∂+Sτ �

⎛
⎜⎝

0∫
�−(x,θ)

p(γx,θ (s))
∣∣f (γx,θ (s), γ̇x,θ (s))

∣∣2
ds

⎞
⎟⎠p(x)−1dξ(x, θ)

= C( max
∂+Sτ �

|�−(x, θ)|)
∫
�

∫
Sτ

x �

|f (x, θ)|2 dθdx

= C( max
∂+Sτ �

|�−(x, θ)|)‖f ‖2
L2(Sτ �)

.

The proof is completed. �
3. Inverse source problem

In this section, we will study the recovery of the source. For this purpose, we consider a larger 
domain �1 � � and �1 is also strictly convex and bounded. Moreover, as mentioned in the 
introduction, we extend ϕ, Y , σ and k to �1 while keeping their regularities and for the source 
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term, we also extend f by zero in �1 \ �. Then f is supported in �. In this larger domain �1, 
we define the corresponding measurement operator A1 by

A1 : f ∈ L2(�1) → L2(∂+Sτ�1, dξ)

in the same way as the previously defined operator A. To recover f , we will take the measure-
ment on ∂�1 instead of ∂�.

Note that all operators below are also defined in the same way as before, the only difference 
is that they are now defined in the domain �1.

Suppose that for (σ, k) ∈ U , the corresponding operator T1 −K is invertible. This is promised 
by the well-posedness theorem. Then we can express

A1f = B+T −1
1 (Id − KT −1

1 )−1�f =: Iσ,F f + Lf,

where the operator Iσ,F is defined in (1.9), written as Iσ,F |∂+Sτ �1 = B+(T −1
1 �), and L :

L2(�1) → L2(∂+Sτ�1, dξ) is defined by

L := B+(−Id + (Id − T −1
1 K)−1)T −1

1 �.

Moreover, L can be recast as

L = B+T −1
1 (Id − KT −1

1 )−1KT −1
1 �

and from this expression, one can see that L is a bounded operator since B+T −1
1 : L2(Sτ�1) →

L2(∂+Sτ�1, dξ), (Id − KT −1
1 )−1 : L2(Sτ�1) → L2(Sτ�1) and KT −1

1 � : L2(�1) →
L2(Sτ�1) are bounded operators.

Now with A∗
1, the adjoint of A1, we decompose the operator A∗

1A1 into

A∗
1A1 = I ∗

σ,F Iσ,F + (I ∗
σ,F L + L∗Iσ,F + L∗L) =: I ∗

σ,F Iσ,F +L. (3.1)

Therefore, we can view A∗
1A1 as a compact perturbation of I ∗

σ,F Iσ,F , where the perturbation L
is a compact operator on L2(�1) as shown in Lemma 3.1. To achieve this, we first study the 
adjoint of Iσ,F .

3.1. Analysis of L and a formula for I ∗
σ,F

We first derive a formula for I ∗
σ,F . Notice that the map ∂+Sτ�1 × (−∞, 0) � (z, θ, s) �→

(x, θ ′) ∈ Sτ�1 given by x = γz,θ (s), and θ ′ = γ̇z,θ (s), which is a local diffeomorphism. The 
inverse of the map can be found by solving γx,θ ′(−s) = z, γ̇x,θ ′(−s) = θ and then its corre-
sponding Jacobian is denoted by

J b(x, θ ′) := det
∂(z, θ, s)

∂(x, θ ′)
.

Recall that W(s, x, θ) := e− ∫ 0
s σ (γx,θ (t),γ̇x,θ (t))dt . Then for f ∈ L2(�1), g ∈ L2(∂+Sτ�1, dξ), we 

have
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〈Iσ,F f, g〉 =
∫

∂+Sτ �1

0∫
−∞

W(s, z, θ)f (γz,θ (s))g(z, θ) dsdξ(z, θ)

=
∫
�1

∫
Sτ

x �1

W(x, θ ′)f (x)g�(x, θ ′)J b(x, θ ′) dθ ′dx

=
∫
�1

f (x)

⎛
⎜⎝ ∫

Sτ
x �1

W(x, θ ′)g�(x, θ ′)J b(x, θ ′) dθ ′

⎞
⎟⎠dx,

where we denote

g�(x, θ ′) := g(z, θ),

that is, g� is extended as a constant along the curve γz,θ (s), and W(x, θ ′) := W(s, z, θ). There-
fore, we have the adjoint of Iσ,F as follows:

[I ∗
σ,F g](x) :=

∫
Sτ

x �1

W(x, θ ′)J b(x, θ ′)g�(x, θ ′) dθ ′.

This yields that (see [7])

[I ∗
σ,F B+T −1

1 h](x)

=
∫

Sτ
x �1

W(x, θ ′)J b(x, θ ′)
∫
R

W(γx,θ ′(s), γ̇x,θ ′(s))h(γx,θ ′(s), γ̇x,θ ′(s)) ds dθ ′.

Therefore, when h(x) = h(x, θ), by performing similar change of variables as in Lemma 2.1 for 
K̂s , we have, modulo a smoothing operator applied to h:

[I ∗
σ,F B+T −1

1 �h](x) =
∫

Sn−1

∫
R

B(x, r,w)h(x + rw)drdw,

with θ ′ = p(x)v and

B(x, r,w)

= χ(s)J−1(x, s, θ ′)W(x, θ ′)J b(x, θ ′)W(γx,θ ′(s), γ̇x,θ ′(s))p(x)n−1|s=s(x,r,w),v=v(x,r,w).

We denote Beven(x, r, w) = (B(x, r, w) + B(x, −r, −w))/2. We can thus integrate over r ≥ 0
and double the result

[I ∗
σ,F B+T −1

1 �h](x) = 2
∫

Sn−1

∞∫
0

Beven (x, r,w)h(x + rw)drdw.
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Therefore, the change of variables y = x + rw leads to

[I ∗
σ,F B+T −1

1 �h](x) = 2
∫
�1

Beven

(
x, |x − y|, x − y

|x − y|
)

h(y)

|x − y|n−1 dy. (3.2)

To analyze the operator L, we also need the following result regarding weakly singular integral 
operators.

Proposition 3.1. [23, Proposition 3.4] Let A be the operator

Af (x) =
∫ α(x, y, |x − y|, x−y

|x−y| )
|x − y|n−1 f (y)dy

with α(x, y, r, θ) compactly supported in x, y. If α ∈ C2, then A : L2 → H 1 is continuous with 
a norm not exceeding C‖α‖C2 .

Lemma 3.1. Suppose that

k(x, θ, θ ′) = κ1(x, θ)κ2(x, θ ′).

The operator L is compact on L2(�1). Moreover, ∂xL is also compact on L2(�1).

Proof. (1) Note that KT −1
1 (Id − KT −1

1 )−1� = (Id − KT −1
1 )−1KT −1

1 �, and thus we have

L = B+T −1
1 KT −1

1 (Id − KT −1
1 )−1� = B+T −1

1 (Id − KT −1
1 )−1KT −1

1 �.

To show that I ∗
σ,F L is compact, we recall that KT −1

1 � is a compact operator in Lemma 2.2 and, 

moreover, both B+T −1
1 and (Id−KT −1

1 )−1 are bounded operators. Combining all these together 
yields that L is compact. Since I ∗

σ,F is a bounded operator mapping from L2(∂+Sτ�1, dξ) to 
L2(�1), we thus obtain that I ∗

σ,F L is a compact operator on L2(�1).
From the above argument, we see that the operator L is compact, and thus the adjoint operator 

L∗ is compact as well. Therefore, we conclude that both L∗L and L∗Iσ,F are compact operators. 
This completes the first part of the proof.

(2) To show that ∂xL is also compact, we also start by studying ∂xI
∗
σ,F L. From the assumption 

on the kernel, we can write operator K with kernel κ1κ2. This gives

[KT −1
1 h](x, θ) = κ1(θ)[Gh](x)

with

[Gh](x) := [Ĝrh + Ĝsh](x),

where Ĝr is a smooth operator and Ĝs is a singular integral operator as in Lemma 2.1, but with 
the kernel depending only on x, θ ′. Then ∂xI

∗ L can be expressed as
σ,F
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∂xI
∗
σ,F L = (∂xI

∗
σ,F B+T −1

1 κ1�)(G(Id − KT −1
1 )−1�).

Moreover, we have known that (Id − KT −1
1 )−1KT −1

1 � is compact from (1). The compact-
ness of G� follows from the assumption on k ∈ C2 and Proposition 3.1. Hence we can derive 
that

G(Id − KT −1
1 )−1� = G(� + (Id − KT −1

1 )−1KT −1
1 �)

is also a compact operator. Now it remains to show that ∂xI
∗
σ,F B+T −1

1 κ1� is bounded. From 
(3.2), we have

[I ∗
σ,F B+T −1

1 κ1�h](x)

= 2
∫
�1

κ1(γx,pv(s), γ̇x,pv(s))|s=s(x,|x−y|, x−y
|x−y| ),v=v(x,|x−y|, x−y

|x−y| )

× Beven

(
x, |x − y|, x − y

|x − y|
)

h(y)

|x − y|n−1 dy.

We then have ∂xI
∗
σ,F B+T −1

1 κ1� : L2(�1) → L2(�1) is bounded by Proposition 3.1. Hence 
∂xI

∗
σ,F L is compact.
To analyze the operator ∂xL

∗L, we follow the proof for ∂xI
∗
σ,F L to get

∂xL
∗L = (∂xL

∗B+T −1
1 κ1�)(G(Id − KT −1

1 )−1�).

Recall that G(Id − KT −1
1 )−1� is compact, therefore it suffices to show that ∂xL

∗B+T −1
1 κ1� :

L2(�1) → L2(�1) is bounded. Note that

∂xL
∗B+T −1

1 κ1� = ∂x(B+T −1
1 (Id − KT −1

1 )−1KT −1
1 �)∗B+T −1

1 κ1�

= ∂x(KT −1
1 �)∗(B+T −1

1 (Id − KT −1
1 )−1)∗B+T −1

1 κ1�.

Since B+T −1
1 and (Id − KT −1

1 )−1 are bounded, it remains to study the operator ∂x(KT −1
1 �)∗. 

Recall the kernel of KT −1
1 � in the proof of Lemma 2.2 and thus a similar expression holds for 

the adjoint (KT −1
1 �)∗. Then we apply Proposition 3.1 again to conclude that ∂x(KT −1

1 �)∗ is 
bounded, and the compactness of ∂xL

∗L follows.
To show that ∂xL

∗Iσ,F is compact, we recall that Iσ,F |∂+Sτ �1 = B+T −1
1 �, thus

∂xL
∗Iσ,F = ∂xL

∗B+T −1
1 �

= ∂x(KT −1
1 �)∗(B+T −1

1 (Id − KT −1
1 )−1)∗B+T −1

1 �.

Now the compactness of ∂xL
∗Iσ,F follows immediately from the proof for ∂xL

∗L by taking 
κ1 ≡ 1. �
744



R.-Y. Lai and H. Zhou Journal of Differential Equations 302 (2021) 728–752
3.2. Proof of Theorem 1.1

Proof of Theorem 1.1. Since real analytic functions are dense in C2(Sτ�1), we can now as-
sume that σ is real analytic. By [7, Proposition 2], there exists a parametrix Q of order 1 to 
the elliptic pseudodifferential operator (�DO) I ∗

σ,F Iσ,F in �1. We can also restrict the image 
of Q to L2(�) and thus after this restriction, we can view Q : H 1(�1) → L2(�). Taking any 
f ∈ L2(�), extended by zero outside �, so that such f is in L2(�1), we have

QI ∗
σ,F Iσ,F f = f + Rf,

where the operator R is of order −1 with a smooth kernel. From (3.1), applying Q to A∗
1A1

yields that

QA∗
1A1f = f + R̃f, R̃ := R + QL. (3.3)

By Lemma 3.1, we have that ∂xL : L2(�1) → L2(�1) is a compact operator and also Lf ∈
H 1(�1). This implies that QL : L2(�1) → L2(�) is compact since Q is a bounded operator. 
Together with the smooth operator R, we deduce that R̃ : L2(�) → L2(�) is compact as well.

(1) Injectivity of A1. The solvability of the Fredholm equation QA∗
1A1f = f + R̃f is equiv-

alent to the invertibility of QA∗
1A1, which then implies that A∗

1A1 is injective. Moreover, since 
the injectivity of A∗

1A1 implies the injectivity of A1. Therefore, to show the statement (1), it is 
sufficient to show that QA∗

1A1 is invertible.
To this end, we first fix a real analytic σ in Sτ�1. By [7, Theorem 1 and 2], the operator 

I ∗
σ,F Iσ,F is injective and this injectivity holds as well for small enough C1 perturbations of σ . 

Also, due to Theorem 2.1, there exists an open dense set U such that the well-posedness holds 
in �1 for these (σ, k) in the set U . We consider the operator A1 with (σ, λk) with λ in some 
complex neighborhood C of [0, 1].

Next we show that the operator R̃ = R +QL depends meromorphically on λ ∈ C. To see this, 
since L is meromorphic by the proof of Theorem 2.1, L is a meromorphic function of λ. This 
implies that the operator R̃(λ) is also a meromorphic function of λ. Also the proof of Theorem 2.1
yields that the operator R̃(λ) exists for all but a discrete set S ⊂ C. In particular, C \ S is an open 
connected subset of C as well.

Moreover, we show that when λ = 0, Id + R̃(0) is invertible. Note that when λ = 0 that is 
(σ, 0), we have L = 0 implying R̃ = R. Since R is compact, the operator Id + R has a finite 
dimensional kernel. By following the argument in the proof of [22, Proposition 4, Theorem 2], 
we can add a finite rank operator to Q, and then the operator Id + R can be arranged to be 
injective. As a result, Id + R is invertible.

Combining these facts together, the analytic Fredholm theorem (Proposition 2.2 by letting 
D = C \ S) implies that

QA∗
1A1 = Id + R̃(λ) is invertible for all λ ∈ C

with the possible exception of a (larger) discrete set S′ ⊂ C. Since λ = 1 is an accumulation point 
of C \ S′, we further deduce that A1 is injective for (σ, λk) for those λ ∈ C \ S′ are close to 1. 
Finally we can conclude that there is a dense set V of pairs (σ, k) in U such that A1 is injective.
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(2) Stability. Besides the injectivity, we can derive a stability estimate in terms of the normal 
operator A∗

1A1. If (σ, k) ∈ V , then Id + R̃ is invertible on L2(�), the Fredholm equation (3.3)
implies that

‖f ‖L2(�) = ‖(Id + R̃)−1QA∗
1A1f ‖L2(�) ≤ C‖A∗

1A1f ‖H 1(�1)
. (3.4)

Moreover, similar to the proof of Theorem 2.1, the resolvent (Id + R̃)−1 depends continuously 
on (σ, k), so is Q. Therefore, applying perturbation arguments yields that the set V is open and 
the constant C in (3.4) is locally uniform in (σ, k). This completes the proof. �
Remark 3.1. There is an alternative proof for the stability by estimating

‖f ‖L2(�) � ‖A∗
1A1f ‖H 1(�1)

+ ‖R̃f ‖L2(�).

Since A∗
1A1 is injective for (σ, k) ∈ V , and R̃ : L2(�) → L2(�) is compact, by [24, Proposition 

V.3.1], we obtain the stability estimate (1.8).
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Appendix A. Santalo’s formula

The Santalo’s formula is an integral identity that turns an integral over the interior region to the 
boundary and vice versa. The proof of Santalo’s formula relies on the Liouville theorem, which 
states that the volume is preserved under Hamiltonian flows. For example, the flows associated 
to divergence free vector fields are volume preserving. It is known that a geodesic flow preserves 
the Liouville measure d�2n−1, specified later, and this formula was shown in [18]. The formula 
also holds for magnetic systems, see [6].

In this section, we prove an analogue of the Santalo’s formula for a flow under the influence 
of external force. Unlike the previous results with unit velocity with respect to (w.r.t.) the metric, 
the flow has varying velocity θ depending on the space variable. This explains the presence of 
the extra terms in (A.1).

The main idea of the proof of Proposition A.1 is to transform the flow into a magnetic geodesic 
under a conformally Euclidean metric g so that the new flow has unit speed η, an unit vector w.r.t. 
the metric g. Then we perform the change of variables θ �→ η. By applying the Santalo’s formula 
for magnetic system [6], the integral over the interior region is transformed to the integral over 
the boundary. Finally, we apply the change of variable again to obtain the desired formula.

To simplify notations, we denote

P(x) := 2(τ − ϕ(x)).

Recall that p(x) = √
2(τ − ϕ(x)) and the backward exit time �− is defined in Section 2.1.
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Proposition A.1 (Santalo’s formula). Suppose that � is a bounded convex domain in Rn with 
smooth boundary. For any f ∈ L1(Sτ�), one has

∫
�

∫
Sτ

x �

f (x, θ) dθdx =
∫

∂+Sτ �

⎛
⎜⎝

0∫
�−(x,θ)

P (γx,θ (s))
1
2 f (γx,θ (s), γ̇x,θ (s)) ds

⎞
⎟⎠P(x)

−1
2 dξ(x, θ),

(A.1)

where dξ(x, θ) = 〈θ, n(x)〉e dθdμ(x) and dμ(x) is Lebesgue measure on ∂� and n(x) is the 
unit outer normal to ∂� w.r.t. the Eucliean metric e.

Proof. Since 1
2 |θ |2 + ϕ = τ , we consider the conformal Euclidean metric g = 2(τ − ϕ)e, where 

e is the Euclidean metric. If γ (t) is a curve for Hamiltonian with external force at energy level 
τ , let

s(t) =
t∫

0

2(τ − ϕ(γ (a))) da,

then the Maupertuis’ principle implies that ζ(s) := γ (t (s)) is a unit speed magnetic geodesic 
w.r.t. the metric g, see [2, Proposition 1]. Let Sg� be the unit sphere bundle w.r.t. g, if η ∈ S

g
x �, 

then θ = 2(τ − ϕ(x))η ∈ Sτ
x �. We also denote

∂+Sg� := {(x, η) : x ∈ ∂�, η ∈ S
g
x �, g(η,ng) > 0},

where ng(x) is the unit outer normal w.r.t. metric g at x ∈ ∂�. Note that

ds = P(x)dt, ζ̇ (s) = γ̇ (t (s))P −1(γ (t (s))) = η.

We denote the Riemannian volume form on � by

dV n(x) = √
detg(x) dx = P n/2(x)dx

and the Riemannian volume form on ∂� by dV n−1(x) satisfying

dV n−1(x) = P (n−1)/2(x)dμ(x), (A.2)

where dμ(x) is the surface measure on ∂� w.r.t. the Euclidean metric. Let dwx(η) denote the 
angle measure on the unit sphere Sg

x� with

∫
S

g
x �

dwx(η) = ωn−1,

where ωn−1 is the area of the unit sphere (w.r.t. the Euclidean metric) in Rn. In local coordinates,
747



R.-Y. Lai and H. Zhou Journal of Differential Equations 302 (2021) 728–752
dwx(η) = √
detg(x)

∑
i

(−1)i−1ηidη1 ∧ · · · ∧ d̂ηi ∧ · · · ∧ dηn. (A.3)

Here d̂ηi designates that the term dηi is omitted. Note that θ = P(x)η yields that

dθ =
∑

i

(−1)i−1 θi

|θ |dθ1 ∧ · · · ∧ d̂θ i ∧ · · · ∧ dθn

=
∑

i

(−1)i−1 θi

p(x)
dθ1 ∧ · · · ∧ d̂θ i ∧ · · · ∧ dθn

= P n− 1
2 (x)

∑
i

(−1)i−1ηidη1 ∧ · · · ∧ d̂ηi ∧ · · · ∧ dηn = P
n−1

2 dwx(η). (A.4)

Together with dV n(x) = P n/2(x)dx, we have

dxdθ = P
−n
2 (x)dV n(x)P

n−1
2 dwx(η) = P

−1
2 (x)dwx(η) ∧ dV n(x) = P

−1
2 (x)d�2n−1,

where d�2n−1(x, θ) = dwx(η) ∧ dV n(x) is the Liouville measure. This thus implies that

∫
Sτ �

f (x, θ) dxdθ =
∫
�

∫
S

g
x �

P
−1
2 (x)f (x,Pη)d�2n−1(x, η)

=
∫

∂+Sg�

0∫
�−(x,η)

P
−1
2 (ζ(s))f (ζ(s),P ζ̇ (s)) ds 〈η,ng(x)〉gd�2n−2(x, η)

=: I,

where in the second identity above, we apply Santaló’s formula for a compact Riemannian mani-
fold with unit sphere bundle in [6, Lemma A.8]. Here we denote 〈η, ng(x)〉g := g(η, ng(x)) and, 
moreover,

d�2n−2(x, η) = dwx(η) ∧ dV n−1(x).

We now change the integral I back to the Euclidean metric. By using (A.4) and (A.2), we get

d�2n−2 = P
−(n−1)

2 dθP
(n−1)

2 dμ(x) = dθdμ(x).

Hence

I =
∫

τ

0∫
P

−1
2 (γ (t))f (γ (t), γ̇ (t))P (γ (t))dt P 〈P −1θ,P −1/2n(x)〉e dθdμ(x)
∂+S � �−(x,θ)
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=
∫

∂+Sτ �

0∫
�−(x,θ)

P (γ (t))
1
2 f (γ (t), γ̇ (t)) dt P (x)

−1
2 〈θ,n(x)〉e dθdμ(x).

This completes the proof of the Santalo’s formula. �
Appendix B. Weakly singular operators

Proposition B.1 (Compact operators). Suppose that β ∈ L2(Sτ� × Sτ�). The operator

�f (x, θ) =
∫ ∫

Sτ �

β(x, y, θ, θ ′)f (y, θ ′) dydθ ′ (B.1)

is compact on L2(Sτ�).

Proof. First we show that � is well-defined on L2(Sτ�) and is bounded by ‖β‖L2(Sτ �×Sτ �). 
By Hölder inequality, we have

|�f (x, θ)| ≤
⎛
⎝∫ ∫

Sτ �

|β(x, y, θ, θ ′)|2 dydθ ′
⎞
⎠1/2

‖f ‖L2(Sτ �).

Then

‖�f ‖2
L2(Sτ �)

=
∫ ∫

Sτ �

|�f (x, θ)|2 dxdθ

≤ ‖f ‖2
L2(Sτ �)

∫ ∫
Sτ �

∫ ∫
Sτ �

|β(x, y, θ, θ ′)|2 dydθ ′dxdθ

= ‖f ‖2
L2(Sτ �)

‖β‖2
L2(Sτ �×Sτ �)

,

which implies the operator norm of �, denoted by ‖�‖∗, is bounded by ‖β‖L2(Sτ �×Sτ �).
Let {φk}∞k=1 be orthonormal bases for L2(Sτ�). Fubini’s theorem gives that if ψij (x, y, θ, θ ′)

= φi(x, θ)φj (y, θ ′), then ψij is an orthonormal basis for L2(Sτ� × Sτ�). For m = 1, 2, . . ., let

βm(x, y, θ, θ ′) :=
∑

i+j≤m

aijψij (x, y, θ, θ ′), aij = 〈
β,ψij

〉
L2(Sτ �×Sτ �)

and define the operator

�mf (x, θ) :=
∫ ∫

Sτ �

βm(x, y, θ, θ ′)f (y, θ ′) dydθ ′.

Then �m has finite rank and thus �m is a compact operator.
749



R.-Y. Lai and H. Zhou Journal of Differential Equations 302 (2021) 728–752
On the other hand,

‖β − βm‖2
L2(Sτ �×Sτ �)

=
∑

i+j>m

|aij |2 → 0 as m → ∞,

as a result,

‖� − �m‖∗ ≤ ‖β − βm‖L2(Sτ �×Sτ �) → 0 as m → ∞.

Therefore, � is the norm limit of operators of finite rank. This implies that � is a compact 
operator. �
Proposition B.2. Suppose that � is a bounded domain in Rn. Suppose that β satisfies

|β(x, y, θ, θ ′)| ≤ C1|x − y|1−n, (x, y, θ, θ ′) ∈ Sτ� × Sτ�

for some positive constant C1. Then the linear operator � : L2(Sτ�) → L2(Sτ�) of the form

�f (x, θ) =
∫ ∫

Sτ �

β(x, y, θ, θ ′)f (y, θ ′) dydθ ′, (B.2)

is compact on L2(Sτ�).

Proof. For any positive integer m, we first define the truncated kernels β̂m(x, y, θ, θ ′) defined 
by

β̂m(x, y, θ, θ ′) :=
{

β(x, y, θ, θ ′) if |x − y| ≥ 1/m,

0 otherwise.

Then β̂m is in L2(Sτ� × Sτ�). We define the operator

�̂mf (x, θ) :=
∫ ∫

Sτ �

β̂m(x, y, θ, θ ′)f (y, θ ′) dydθ ′

for all positive integer m. By Proposition B.1, �̂m is compact.
Next we will show that ‖� − �̂m‖∗ → 0 as m → ∞. To establish this, we denote

εm(x, θ) :=
∫ ∫

Sτ �

|β(x, y, θ, θ ′) − β̂m(x, y, θ, θ ′)|dydθ ′

and obtain that
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|εm(x, θ)| ≤
∫ ∫

|x−y|<1/m

|β(x, y, θ, θ ′)|dydθ ′

≤
∫ ∫

|x−y|<1/m

C1

|x − y|n−1 dydθ ′

≤ Cm−1,

where the constant C depends only on n, �, τ and the function p. Then εm → 0 when m → ∞. 
Note that this convergence is independent of x and θ .

For every f ∈ L2(Sτ�), we estimate

‖(� − �̂m)f ‖2
L2(Sτ �)

≤
∫ ∫

Sτ �

∣∣∣∣∣∣
∫ ∫

Sτ �

(
β(x, y, θ, θ ′) − β̂m(x, y, θ, θ ′)

)
f (y, θ ′) dydθ ′

∣∣∣∣∣∣
2

dxdθ

≤
∫ ∫

Sτ �

⎛
⎝∫ ∫

Sτ �

|β(x, y, θ, θ) − β̂m(x, y, θ, θ ′)|dydθ ′
⎞
⎠

⎛
⎝∫ ∫

Sτ �

|β(x, y, θ, θ ′) − β̂m(x, y, θ, θ ′)||f (y, θ ′)|2 dydθ ′
⎞
⎠ dxdθ

≤ Cm−1
∫ ∫

Sτ �

⎛
⎝∫ ∫

Sτ �

|β(x, y, θ, θ ′) − β̂m(x, y, θ, θ ′)||f (y, θ ′)|2 dydθ ′
⎞
⎠ dxdθ

≤ Cm−2
∫ ∫

Sτ �

|f (y, θ ′)|2 dydθ ′

≤ Cm−2‖f ‖2
L2(Sτ �)

,

which leads to ‖� − �̂m‖∗ → 0 as m → ∞. Finally, we conclude that � is a compact operator 
since it is the limit of compact operators �̂m. �
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