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Abstract

In this paper, we analyze the nonlinear single pixel X-ray transform K and study the re-
construction of f from the measurement Kf . Different from the well-known X-ray transform,
the transform K is a nonlinear operator and uses a single detector that integrates all rays in
the space. We derive stability estimates and an inversion of the linearization at zero. We also
consider the case where we integrate along geodesics of a Riemannian metric. Moreover, we
conduct several numerical experiments to corroborate the theoretical results.
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1 Introduction

In this paper, we study the single pixel X-ray transform K defined by

Kf(x) :=

∫
Sn−1

e−Xf(x,θ) dθ, (1.1)

whose exterior integral integrates over the entire unit sphere Sn−1 in Rn, n ≥ 2. The inner function
consists of an exponential function and the conventional X-ray transform X defined by

Xf(x, θ) :=

∫
`
f ds =

∫
R
f(x+ sθ) ds, (x, θ) ∈ Rn × Sn−1, (1.2)

where ` = x + sθ is a line passing through a point x ∈ Rn, in the direction θ ∈ Sn−1. Notice
that the single pixel X-ray transform K in (1.1) is different from the single pixel imaging. In the
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single pixel imaging, weighted integrals of the Radon transform are assumed. However, from the
definition of Kf(x) in (1.1), we see that it integrates all lines through the point x, which results in
collapse of an image into a scalar value. This distinguishes the K transform from the usual single
pixel imaging.

Inversion of the standard X-ray transform consists of recovering a function supported in a
bounded domain from its integrals along straight lines through this domain. In dimension two
(n = 2), it coincides with the Radon transform [10], which provides the theoretical underpinning
for several medical imaging techniques such as Computed Tomography (CT) and Positron Emission
Tomography (PET). The X-ray transform has been extensively studied, including its uniqueness,
stability estimates and reconstruction formula, see for example, the book [7]. Generalizations of
the standard X-ray transform include integrals of tensor fields or along curved lines. We refer to
recent survey papers [3, 8] and the references therein for more details.

A notable difference between the conventional X-ray transform X and the single pixel X-ray
transform K is the nonlinearity due to the exponential function. Another difference comes from
the fact that for instance, in R3, the X-ray transform X gives a two-dimensional image Xf(x, θ),
θ ∈ S2 for a fixed x, while Kf(x) gives a scalar value. In this sense, the available data for the single
pixel X-ray transform is much less than that of the conventional X-ray transform. In practice, it
can be used in the scenario when one wants to validate the structure of an object without revealing
much detail. For more details on the applications, we refer to [9].

The objective of this paper is to recover f from the data Kf by establishing a reconstruction
formula and deriving stability estimates. The second author of this paper has previously demon-
strated the global uniqueness of the inverse problem. This proof can be found in the supporting
information of [9] by applying the monotonic property of K and the known injectivity of the X-
ray transform X [1, 7]. Due to the special structure of the transform K, however, it is not clear
that if the same technique in [9] can be directly applied to the study of stability estimates and
reconstruction formulas.

1.1 Motivation

The single pixel X-ray transform finds applications in protection of information in highly sensitive
systems. The nonlinearity of the transform K acts as a shield against the disclosure of such
information. Here the exponential function is chosen to be the nonlinear function in K since
attenuation is naturally exponential in space. Specifically, this nonlinearity ensures that there is
no one-to-one correspondence between the density f and the true mass

∫
Sn−1

∫
R f(x + sθ)dsdθ

and, therefore, f cannot be estimated from a single projection. This thus protects the detailed
information of the system such as its structure and composition. For interested readers, we refer
to [9] for more discussions on applications of the single pixel X-ray transform.

1.2 Main results

The transform K is nonlinear and a monotone decreasing map due to the exponential function in
the definition. In particular, the nonlinearity of the transform helps secure information; on the
other hand, it also introduces difficulties to the mathematical and practical reconstruction of f .
Moreover, the monotonicity of K implies that when f is increasing, the measurement Kf becomes
decreasing and could be eventually very small, which makes it challenging to distinguish the true
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measurement from noise if the noise does exist.

As mentioned earlier, the global uniqueness of K was proved in [9]. However, the inversion
formula, to the best of the authors’ knowledge, has not been derived and stability estimate has not
yet been investigated. The first result we study here is to establish a reconstruction formula of the
linearization of K at f = 0.

Let Ω be an open bounded domain in Rn, n ≥ 2. We define the space

Mk(Ω) := {f ∈ Ck(Rn) : f is supported in Ω}.

Through out the paper, we denote by Ω the closure of the domain Ω in Rn. When linearizing
around zero, we have the following inversion formula and the stability estimate for the linearized
setting.

Theorem 1.1 (Inversion of the linearization at f = 0). Let Ω be an open bounded domain in Rn,
n ≥ 2 with smooth boundary. For any h ∈ M0(Ω), assume that we know K(εh) for all ε ∈ R
sufficiently close to zero, then

h = −cn|D|(∂ε|ε=0K(εh)),

where cn = (2π|Sn−2|)−1 with |Sn−2| the measure of the unit sphere Sn−2, and |D| = (−∆)1/2 is the
square root of Laplacian, which is a pseudo-differential operator. Here we define the first derivative
of the function K(εh) with respect to ε at ε = 0 by ∂ε|ε=0K(εh).

Theorem 1.1 states that a function h can be reconstructed through this formula based on the
linearized data. It also immediately implies the estimate for h, see Corollary 1.1. The proof of
Corollary 1.1 follows directly from Proposition 2.2 and the inversion of the linearization of K at
zero.

Corollary 1.1 (Stability estimate for the linearized problem). Let Ω be an open bounded domain
in Rn, n ≥ 2 with smooth boundary and let Ω1 be a larger open and bounded domain satisfying
Ω ⊂ Ω1. There exists a constant C > 0 depending on n, Ω, and Ω1 so that

C−1‖h‖L2(Rn) ≤ ‖∂ε|ε=0K(εh)‖H1(Ω1) (1.3)

for h ∈M0(Ω).

Then we return to the nonlinear problem. We state stability estimate results for small f in two
different settings. Notice that K is nonlinear, and K(0) ≡ |Sn−1| 6= 0.

Theorem 1.2. Let Ω ⊂ Rn, n > 2 be an open and bounded domain and let Ω1 be a larger open
and bounded domain so that Ω ⊂ Ω1. Let f ∈M1. For any L > 0, there exists ε > 0 such that for
any f satisfying

‖f‖C1(Rn) < min{ε, 1}, ‖f‖Ht(Rn) < L, t > n+ 2,

one has the conditional stability estimate

‖f‖C1(Rn) ≤ C‖K(f)− |Sn−1|‖µ
H1(Ω1)

, (1.4)

for some µ ∈ (0, 1), where the constant C > 0 depends on K and L only.

In addition, we also study continuity estimate for K as well as another stability estimate under
suitable assumptions of fj , j = 1, 2.
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Theorem 1.3. Let Ω ⊂ Rn, n > 2 be an open and bounded domain and let Ω1 be a larger open
and bounded domain so that Ω ⊂ Ω1. Then for any f1, f2 ∈M1(Ω) with ‖fj‖C1(Rn) ≤M , j = 1, 2,
for some fixed positive constant M , we have the continuity estimate

‖Kf1 −Kf2‖H1(Ω1) ≤ C(1 + eCM +MeCM )‖f1 − f2‖L2(Rn) + C(eCM − 1)‖∇(f1 − f2)‖L2(Rn),

where the positive constant C is independent of M .

Moreover, assume that f1, f2 satisfy

‖f1 − f2‖L2(Rn) ≥ c‖∇(f1 − f2)‖L2(Rn) (1.5)

for a fixed constant c > 0, if M is sufficiently small, then we have

C̃‖f1 − f2‖L2(Rn) ≤ ‖Kf1 −Kf2‖H1(Ω1), (1.6)

where the positive constant C̃ depends on c,M .

Notice that Theorem 1.2, 1.3, hold for n > 2 since their proofs rely on Proposition 2.2, which
is valid when n > 2.

The estimates (1.4) and (1.6) imply that the data Kf in Ω1 is sufficient to give local stability
estimate. Under the assumption (1.5), the left hand side of (1.6) can be replaced by ‖f1−f2‖H1(Rn)

with another constant C̃.

We apply the linearization scheme to investigate this nonlinear inverse problem, namely, recon-
structing f from the measurement Kf . Indeed, to study nonlinear inverse problems, it is classical
to utilize the linearization scheme and then reduce it to the problem of their linearization, where
the existing results, such as injectivity, are utilized to identify the unknown property [4]. We would
also like to note that a general result is proved in [13] when linearizing nonlinear inverse problems.
It gives Hölder type estimates for the nonlinear problem under some conditions. In Section 2, we
linearize the transform K around zero function. This is motivated by the following observation.
Since the first nonconstant term of Taylor’s expansion of Kf is the normal operator of the X-ray
transform X, linearizing Kf then reveals this term while the remaining higher order terms vanish.
Additionally, thanks to the previously established results for the X-ray transform, we can derive
a local reconstruction formula of K and also stability estimates for small enough f . For a general
function f (not necessary small), however, it would be more challenging to stably recover f since
the higher order terms dominate the behavior of f . We do not consider this issue here.

In this paper, we also study the single pixel X-ray transform K in the Riemannian case. We
establish the uniqueness of K on compact manifolds with boundary, on which the geodesic X-ray
transform X is injective. Our proof is a generalization of the argument for the Euclidean case [9],
by applying the Santalo’s formula.

Besides the above theoretical results, we conduct numerical reconstructions for the single pixel
X-ray transform K by an optimization method. These experiments provide numerical evidence
for our stability estimates of K. In particular, if the magnitude of f is small, the reconstruction
of f from Kf works quite well, even in the presence of mild noise. While in the case of large f ,
the optimization approach could fail, which suggests that the estimates (1.4), (1.6) might not hold
when M is large.
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2 Inverse problems

2.1 Preliminary results

We introduce several known results for the X-ray transform. For a function f ∈ S(Rn), the
Schwartz space, the X-ray transform

Xf(x, θ) =

∫
R
f(x+ sθ) ds

is well-defined and is constant along lines in direction θ, that is, Xf(x, θ) = Xf(x + tθ, θ) and,
moreover, Xf(x, θ) = Xf(x,−θ) for t ∈ R, x ∈ Rn and θ ∈ Sn−1. By the Fubini’s theorem, X can
be extended to L1(Rn). Let Σ := {(z, θ) ∈ Rn × Sn−1 : z ∈ θ⊥}, where θ⊥ := {z ∈ Rn : z ⊥ θ} is
the orthogonal complement of θ, be the parameter set of straight lines, then

X : C∞c (Rn)→ C∞c (Σ)

is a continuous map. In particular, Xf is compactly supported in Σ if f is compactly supported.
We denote the adjoint of X, under the L2 inner product, by X ′ and the normal operator by X ′X.
Then X ′ : C∞c (Σ)→ C∞(Rn) has the expression

X ′ψ(x) :=

∫
Sn−1

ψ(x− (x · θ)θ, θ) dθ.

Then we have the following results, see [7, 14] for detailed discussions and proofs.

Lemma 2.1. For f ∈ S(Rn) (Schwartz space),

X ′Xf(x) =

∫
Sn−1

∫
R
f(x+ sθ)ds dθ = 2

∫
Rn

f(y)

|x− y|n−1
dy.

An inversion formula of the X-ray transform is stated below.

Proposition 2.1. For f ∈ S(Rn),
f = cn|D|X ′Xf,

where cn = (2π|Sn−2|)−1, |D| = (−∆)1/2 is a non-local pseudo-differential operator and |Sn−2| is
the measure of the unit sphere Sn−2.

This proposition implies that, up to a positive constant, X ′X is the Fourier multiplier |ξ|−1.
Note that the inversion formula of Proposition 2.1 remains true for any distribution f with compact
support.

Throughout this paper, we use C to denote positive constants, which may change from line to
line.

Next proposition shows the stability of the inversion.

Proposition 2.2. Let Ω be an open bounded domain in Rn, n > 2 with smooth boundary and let
Ω1 be a larger open and bounded domain satisfying Ω ⊂ Ω1. For any nonnegative integer s, there
is a constant C > 0 so that

C−1‖f‖Hs(Rn) ≤ ‖X ′Xf‖Hs+1(Ω1) ≤ C‖f‖Hs(Rn) (2.1)

for f ∈ Hs(Rn) supported in Ω.
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Similar stability estimates in the Riemannian setting have been established in [12]. Notice that
the estimate (2.1) is associated with the normal operator X ′X, which has strong connections to
the operator K. There also exist stability results regarding the transform X itself, see e.g. [7,
Section II.5]. Since Proposition 2.2 is crucial in the derivation of our main results later, we provide
the proof here following [14].

Proof of Proposition 2.2. The second inequality of (2.1) follows from the fact that X ′X is the
Fourier multiplier c−1

n |ξ|−1, which can be directly derived by applying Proposition 2.1. To this
end, we first estimate

‖X ′Xf‖2Hs+1(Rn) = ‖(1 + |ξ|2)(s+1)/2F(X ′Xf)(ξ)‖2L2(Rn) = ‖c−1
n (1 + |ξ|2)(s+1)/2|ξ|−1f̂(ξ)‖2L2(Rn)

≤ C
(
‖(1 + |ξ|2)s/2f̂(ξ)‖2L2(|ξ|>1) + ‖|ξ|−1f̂(ξ)‖2L2(|ξ|≤1)

)
.

Here we denote the Fourier transform of a function f by f̂ or F(f). It remains to estimate the
second term ‖|ξ|−1f̂(ξ)‖2L2(|ξ|≤1). We have

|f̂(ξ)| =
∣∣∣∣∫ e−ix·ξf(x) dx

∣∣∣∣ ≤ ‖f‖Hs(Rn)‖φξ‖H−s(Rn),

where φξ(x) := e−ix·ξχΩ(x) with χΩ ∈ C∞0 (Rn) equals 1 in a neighborhood of Ω. Then

‖|ξ|−1f̂(ξ)‖2L2(|ξ|≤1) =

∫
|ξ|≤1

|ξ|−2|f̂(ξ)|2 dξ

≤

(∫
|ξ|≤1

|ξ|−2 dξ

)
‖f‖2Hs(Rn) max

|ξ|≤1
‖φξ‖2H−s(Rn).

Note that ‖φξ‖H−s(Rn) ≤ C, where the constant C > 0 depends on n, s for each |ξ| ≤ 1. Moreover,∫
|ξ|≤1 |ξ|

−2 dξ < ∞ for n ≥ 3. Hence, ‖|ξ|−1f̂(ξ)‖2L2(|ξ|≤1) ≤ C‖f‖2Hs(Rn) also holds. This proves

the second inequality of (2.1) by observing that

‖X ′Xf‖Hs+1(Ω1) ≤ ‖X ′Xf‖Hs+1(Rn) ≤ C‖f‖Hs(Rn).

To show the first inequality of (2.1), we begin by applying Proposition 2.1 to get that

‖f‖2Hs(Rn) ≤ C‖X
′Xf‖2Hs+1(Rn) = C

(
‖X ′Xf‖2Hs+1(Ω1) + ‖X ′Xf‖2Hs+1(Rn\Ω1)

)
. (2.2)

The operator X ′X : Hs
0(Ω)→ Hs+1(Rn \Ω1) (note that f is supported in Ω) has a smooth kernel,

so it is compact. Together with the fact that X ′X : Hs
0(Ω) → Hs+1(Ω1) is injective, one can

remove the term ‖X ′Xf‖Hs+1(Rn\Ω1) from the estimate (2.2), see [14] and [15, Proposition V 3.1].
This proves the first inequality of (2.1).

Remark 2.1. The proof of Proposition 2.2 shows that the first inequality of (2.1) also works when
n = 2.

To conclude this section, we establish the following mapping properties of the operator K.
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Proposition 2.3. Let Ω and Ω1 be two open bounded domains in Rn with Ω ⊂ Ω ⊂ Ω1. Then
there exists a positive constant C, depending on n, Ω, and Ω1, such that

‖Kf‖H1(Ω1) ≤ Ce
C‖f‖C0(Rn)(1 + ‖f‖H1(Rn))

for any f ∈ C1(Rn) supported in Ω.

This implies that Kf is well-defined in H1 norm. Notice that K[0] = |Sn−1| and, therefore,
Kf 6= 0 even if f ≡ 0. Due to this fact, it is worth emphasizing that Kf in general is not in
L2(Rn).

Proof. Since f ∈ C1(Rn) with support in Ω, one can denote M := ‖f‖C0(Rn) for some finite

constant M ≥ 0, which implies that |e−Xf | is bounded by eCM . Then

‖Kf‖2L2(Ω1) =

∫
Ω1

∣∣∣∣∫
Sn−1

e−Xf(x,θ) dθ

∣∣∣∣2 dx ≤ ∫
Ω1

∣∣∣∣∫
Sn−1

eCM dθ

∣∣∣∣2 dx ≤ Ce2CM ,

where the constant C depends on n, Ω, and Ω1. Moreover, we have

‖∇Kf‖2L2(Ω1) =

∫
Ω1

∣∣∣∣∇x ∫
Sn−1

e−Xf(x,θ) dθ

∣∣∣∣2 dx =

∫
Ω1

∣∣∣∣∫
Sn−1

−e−Xf
(
∇x
∫
f(x+ sθ) ds

)
dθ

∣∣∣∣2 dx
≤ e2CM

∫
Ω1

(∫
Sn−1

∫
|∇xf(x+ sθ)| dsdθ

)2

dx = e2CM

∫
Ω1

(X ′X|∇f |)2 dx

= e2CM‖X ′X(|∇f |)‖2L2(Ω1) ≤ Ce
2CM‖∇f‖2L2(Rn) ≤ Ce

2CM‖f‖2H1(Rn),

where we applied Proposition 2.2 with s = 0 to derive the second last inequality. Combining the
two estimates for Kf together yields the result.

2.2 A reconstruction formula for linearization of K at f = 0

To study the inverse problem, we replace e−Xf(x,θ) in Kf by its Taylor expansion and then obtain

Kf(x) =

∫
Sn−1

(1−Xf(x, θ) +Rf(x, θ)) dθ

= |Sn−1| −X ′Xf(x) +

∫
Sn−1

Rf(x, θ) dθ, (2.3)

where the higher order terms are denoted by

Rf(x, θ) :=
∞∑
m=2

(−1)m

m!
(Xf)m(x, θ)

and then
∫
Sn−1 Rf(x, θ) dθ is finite for f ∈M0(Ω).

We linearize the transform K around the zero function so that the problem is reduced to the
inverse problem for the X-ray transform.
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Proof of Theorem 1.1. Now we take f = εh ∈ M0(Ω) and let ε > 0 be a sufficiently small real
number. We differentiate K(εh) with respect to ε at ε = 0, denoted by ∂ε|ε=0K(εh), and then
obtain

∂ε|ε=0K(εh)(x) = lim
ε→0

ε−1(K(εh)(x)−K(0)(x))

= −X ′Xh(x) + lim
ε→0

∫
Sn−1

∞∑
m=2

εm−1 (−1)m

m!
(Xh)m(x, θ) dθ

= −X ′Xh(x), (2.4)

where we used the fact that X and X ′X are linear operators and also K(0) = |Sn−1|.

Applying non-local operator cn|D| to both sides of (2.4), the reconstruction formula of X-ray
transform in Proposition 2.1 yields the following reconstruction formula of linearization at f = 0:

cn|D|(∂ε|ε=0K(εh)) = −cn|D|X ′Xh = −h. (2.5)

Hence the proof of Theorem 1.1 is complete.

Remark 2.2. By Proposition 2.2 with s = 0, the formula (2.5) also leads to the stability estimate
of h ∈M0(Ω) in Corollary 1.1.

2.3 Stability estimate

We are ready to show that the reconstruction of f from the data Kf is stable under suitable
assumptions. Below we show the stability estimates with two different approaches.

In the first result, we deduce the stability estimate for small f in the trivial background (f0 = 0).
To begin, we first note that for a fixed f, f0 ∈M1, we have

K(f) = K(f0) +K ′f0(f − f0) +

∫
Sn−1

e−Xf0(x,θ)R(f − f0)(x, θ) dθ,

where K ′f0(f − f0) = −
∫
Sn−1 e

−Xf0(x,θ)X(f − f0)(x, θ) dθ.

Proof of Theorem 1.2. We will check the conditions in Theorem 2 in [13] in order to apply it to
deduce the desired stability estimate at f0 ≡ 0. To this end, we take the Banach spaces

B′′1 = Ht
Ω

(Rn), B1 =M1, B′1 = L2
Ω

(Rn),

and
B′′2 = B′2 = B2 = H1(Ω1).

Then we have B′′1 ⊂ B1 ⊂ B′1. Here we define the spaces Hs
Ω

(Rn) = {u ∈ Hs(Rn) : supp(u) ⊂ Ω}.

By the definition of K ′f0 , we have K ′0(f) = −X ′Xf . It is clear that K ′0 : B′′1 → B′′2 is a
continuous linear map by Proposition 2.2 and the estimate∥∥∥∥∫

Sn−1

Rf(x, θ) dθ

∥∥∥∥
B2
≤ C‖f‖2B1
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holds for some constant C independent of f . Next, to check the conditional stability of linearization
at f0 = 0, we apply Proposition 2.2 to derive

‖K ′0(f)‖B′2 ≥ C
−1‖f‖B′1 .

Finally we only need to check the two interpolation estimates. Applying the Sobolev embedding
theorem, we have for s > n

2 + 1,
‖f‖B1 ≤ C‖f‖Hs(Ω).

Moreover, the standard interpolation estimate (see for instance Remark 1 in [13]) implies that

‖f‖Hs(Rn) ≤ C‖f‖
µ1
L2(Rn)

‖f‖1−µ1Ht(Rn), µ1 = 1− s

t
≥ 0.

Hence it follows that
‖f‖B1 ≤ C‖f‖

µ1
B′1
‖f‖1−µ1B′′1

.

Since B′′2 = B′2 = B2, it is clear that

‖f‖B′2 = ‖f‖µ2B2‖f‖
1−µ2
B′′2

.

for any µ2 ∈ (0, 1]. Taking µ2 = 1. If we choose t > 2s, then µ1µ2 = 1 − s
t > 1/2. Therefore all

conditions required in Theorem 2 in [13] are satisfied, the estimate (1.4) follows.

Then we show the continuity estimate of K together with another conditional stability estimate.

Proof of Theorem 1.3. Suppose that ‖fj‖C1(Rn) ≤ M for some constant M > 0. For any x ∈ Ω1,
from (2.3), we have

Kf1(x)−Kf2(x) = (X ′Xf2 −X ′Xf1)(x) +X ′(Rf1 −Rf2)(x). (2.6)

By direct computations, the remainder term X ′(Rf1 −Rf2)(x) satisfies

|X ′(Rf1 −Rf2)(x)| ≤
(
CM +

(CM)2

2!
+

(CM)3

3!
+ · · ·

)
(X ′X|f1 − f2|)(x)

≤ (eCM − 1)(X ′X|f1 − f2|)(x),

which yields the following two estimates:

|Kf1(x)−Kf2(x)| ≤ |X ′X(f1 − f2)(x)|+ (eCM − 1)(X ′X|f1 − f2|)(x)

and

|Kf1(x)−Kf2(x)| ≥ |X ′X(f1 − f2)(x)| − (eCM − 1)(X ′X|f1 − f2|)(x).

Here C is a positive constant depending on Ω. Based on these, we can derive the L2 norm estimate

‖X ′X(f1 − f2)‖L2(Ω1) − (eCM − 1)‖X ′X|f1 − f2|‖L2(Ω1)

≤ ‖Kf1 −Kf2‖L2(Ω1) ≤ eCM‖X ′X|f1 − f2|‖L2(Ω1).
(2.7)

Next we estimate ‖∇(Kf1 −Kf2)‖L2(Ω1) by differentiating (2.6):

∇(Kf1 −Kf2)(x) = ∇(X ′Xf2 −X ′Xf1)(x) +∇(X ′Rf1 −X ′Rf2)(x). (2.8)
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It is sufficient to estimate the remainder term ∇X ′Rf1 −∇X ′Rf2. Note that for any m ≥ 2,

1

m!
|∇(X ′(Xf1)m −X ′(Xf2)m)(x)|

=
1

(m− 1)!
|X ′((Xf1)m−1∇xXf1 − (Xf2)m−1∇xXf2)|

≤ 1

(m− 1)!
|X ′(((Xf1)m−1 − (Xf2)m−1)∇xXf1)|+ 1

(m− 1)!
|X ′((Xf2)m−1(∇xXf1 −∇xXf2))|

≤ 1

(m− 2)!
(CM)m−1X ′X|f1 − f2|+

1

(m− 1)!
(CM)m−1X ′X|∇(f1 − f2)|.

It follows that

|∇(X ′Rf1 −X ′Rf2)(x)| ≤
(
CM + (CM)2 +

(CM)3

2!
+ · · ·

)
X ′X|f1 − f2|(x)

+

(
CM +

(CM)2

2!
+

(CM)3

3!
+ · · ·

)
X ′X|∇(f1 − f2)(x)|,

which leads to

‖∇X ′Rf1 −∇X ′Rf2‖L2(Ω1) ≤ CMeCM‖X ′X|f1 − f1|‖L2(Ω1) + (eCM − 1)‖X ′X|∇f1 −∇f2|‖L2(Ω1).

Now since f1 − f2 is compactly supported in Ω, we apply Proposition 2.2 to get

‖X ′X|f1 − f2|‖L2(Ω1) ≤ ‖X ′X|f1 − f2|‖H1(Ω1) ≤ C‖f1 − f2‖L2(Rn)

and similarly,
‖X ′X|∇f1 −∇f2|‖L2(Ω1) ≤ C‖∇(f1 − f2)‖L2(Rn).

Thus, the above inequalities imply that

‖∇X ′Rf1 −∇X ′Rf2‖L2(Ω1)

≤ CMeCM‖f1 − f2‖L2(Rn) + C(eCM − 1)‖∇(f1 − f2)‖L2(Rn) =: G.
(2.9)

Note that Proposition 2.2 yields that

C−1‖f1 − f2‖L2(Rn) ≤ ‖X ′Xf2 −X ′Xf1‖H1(Ω1) ≤ C‖f1 − f2‖L2(Rn)

Combining with the second inequality of (2.7) and also (2.8), (2.9), we now have

‖Kf1 −Kf2‖H1(Ω1)

≤ eCM‖X ′X|f1 − f2|‖L2(Ω1) + ‖∇(X ′Xf2 −X ′Xf1)‖L2(Ω1) + G
≤ C(1 + eCM +MeCM )‖f1 − f2‖L2(Rn) + C(eCM − 1)‖∇(f1 − f2)‖L2(Rn).

On the other hand, combining with the first inequality of (2.7) and also (2.8), (2.9), we obtain
the lower bound

‖Kf1 −Kf2‖H1(Ω1) ≥ ‖X ′X(f1 − f2)‖H1(Ω1) − (eCM − 1)‖X ′X|f1 − f2|‖L2(Ω1) − G
≥ (C−1 − C(eCM − 1)− CMeCM )‖f1 − f2‖L2(Rn) − C(eCM − 1)‖∇(f1 − f2)‖L2(Rn).

(2.10)
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Note that when M is decreasing to zero, so is eCM−1. It implies that C−1−C(eCM−1)−CMeCM

is nonnegative if M is small enough. Therefore, if we fix some constant c > 0, given any f1 and f2

satisfying ‖f1 − f2‖L2(Rn) ≥ c‖∇(f1 − f2)‖L2(Rn), then we can derive from (2.10) that

C̃‖f1 − f2‖L2(Rn) ≤ ‖Kf1 −Kf2‖H1(Ω1), (2.11)

where the positive constant C̃ = C−1 −C(1 + 1/c)(eCM − 1)−CMeCM , depending on c, M with
M sufficiently small.

Remark 2.3. We note that the stability estimate improves when the magnitude of f becomes
smaller. To explain this, we observe from (2.11) that when M is decreasing, the term C−1‖f1 −
f2‖L2(Rn) on the right-hand side will dominate. Hence, the whole estimate becomes slightly stabler

since the coefficient C̃ is increasing.

Finally we make a comment on the connection between the stability estimate (1.3) in Corol-
lary 1.1 and the lower bound (2.10). Indeed (2.10) implies (1.3) when either one of fj is zero.

More precisely, we take f1 = εh ∈ M1(Ω) with ε, h ≥ 0, and f2 ≡ 0 with M̃ := ‖εh‖C1(Rn).
The estimate (2.10) yields that

‖K(εh)−K(0)‖H1(Ω1) ≥ (C−1 − C(eCM̃ − 1)− CM̃eCM̃ )‖εh‖L2(Rn) − C(eCM̃ − 1)‖∇(εh)‖L2(Rn).

Dividing by ε and letting ε→ 0 (then M̃ → 0), one has

‖∂ε|ε=0K(εh)‖H1(Ω1) ≥ C−1‖h‖L2(Rn).

2.4 Single pixel transform on Riemannian manifolds

As mentioned in the introduction, the second author [9] proved the uniqueness of the single pixel
X-ray transform K in the Euclidean space Rn. In this section, we show that the proof for the
Euclidean case can be generalized to the case of non-trivial geometries.

Let (M, g) be an n-dimensional, n ≥ 2, compact non-trapping Riemannian manifold with
smooth strictly convex boundary ∂M . Here non-trapping means that every geodesic exits the
manifold in both directions in finite times. Let SM be the unit sphere bundle consisting of all
unit vectors on M , so any (x, v) ∈ SM satisfying ‖v‖g(x) = 1. Given any (x, v) ∈ SM , let γx,v be
the geodesic with initial conditions γx,v(0) = x, γ̇x,v(0) = v. We define the X-ray transform of a
function f on (M, g) as

Xf(x, v) =

∫
f(γx,v(t)) dt, (x, v) ∈ SM.

Since (M, g) is non-trapping, the above integral is indeed over a finite interval. Moreover, Xf(x, v) =
Xf(γx,v(t), γ̇x,v(t)) for all t. Then the single pixel X-ray transform on (M, g) is defined by

Kf(x) =

∫
SxM

e−Xf(x,v) dv, x ∈M.

Let C(M) be the space of continuous functions on M .
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Theorem 2.1. Let (M, g) be a compact non-trapping Riemannian manifold with smooth strictly
convex boundary. Assume that the X-ray transform X is injective on C(M), then the single pixel
X-ray transform K is injective on C(M), in other words, Kf = Kh implies that f = h for
f, h ∈ C(M).

Proof. We denote ∂+SM the set of all unit inward pointing vectors on the boundary ∂M , i.e.
(x, v) ∈ ∂+SM if and only if x ∈ ∂M , and 〈v, ν(x)〉g ≥ 0 where ν(x) is the unit inward normal
vector at x. Let dµ(x, v) = 〈v, ν(x)〉g dxdv be a measure on ∂+SM which vanishes in directions
tangent to ∂M . Consider

〈Kf −Kh, f − h〉 =

∫
M

(Kf −Kh)(x)(f − h)(x) dx

=

∫
SM

(e−Xf(x,v) − e−Xh(x,v))(f − h)(x) dxdv

=

∫
∂+SM

dµ(x, v)

∫
(e−Xf(γx,v(t),γ̇x,v(t)) − e−Xh(γx,v(t),γ̇x,v(t)))(f − h)(γx,v(t)) dt.

The last equality is a direct application of the Santalo’s formula, see e.g. [11, Lemma 3.3.2].

Notice that Xf(γx,v(t), γ̇x,v(t)) is invariant with respect to t, thus

〈Kf −Kh, f − h〉 =

∫
∂+SM

(e−Xf(x,v) − e−Xh(x,v)) dµ(x, v)

∫
(f − h)(γx,v(t)) dt

=

∫
∂+SM

(e−Xf(x,v) − e−Xh(x,v))(Xf(x, v)−Xh(x, v)) dµ(x, v).

The integrand in the last integral has the form (e−u − e−v)(u − v), which is non-positive, and it
equals zero if and only if u = v. Therefore, if Kf = Kh, we have that Xf(x, v) = Xh(x, v) for all
(x, v) ∈ ∂+SM . By our assumption, the X-ray transform X is injective, thus f = h.

It is known that the X-ray transform is injective on simple manifolds [5, 6], which are compact
non-trapping manifolds with strictly convex boundary and free of conjugate points. In dimension
≥ 3, X is injective on compact non-trapping manifolds with strictly convex boundary, which admit
convex foliations [16]. The convex foliation condition allows the existence of conjugate points.

In the current paper, we only consider the uniqueness of K on Riemannian manifolds. It’s rea-
sonable to expect that stability estimates similar to Theorem 1.2, 1.3 will hold on simple manifolds
as well. In particular, stability estimates of the normal operator X ′X on simple manifolds can be
found in [12].

3 Numerical experiments

In this section, we conduct several numerical experiments to corroborate our theoretical results
above. We use the Shepp-Logan phantom with 101× 101 pixels for illustrations.

Assume k is the measured data. More precisely, k(x) is the single pixel X-ray transform of f
at the point x. For all the numerical tests below, k has the same resolution as f . To reconstruct
f from the data k0, we use Gauss-Newton method to minimize the following functional:

arg min
f

1

2
‖Kf − k0‖2L2 .
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To compute the gradient of the above functional, note that for

Kf(x) =

∫
Sn−1

e−Xf(x,θ)dθ,

one can see that the Frechét derivative of K at f is given as

K ′f (h)(x) =

∫
Sn−1

e−Xf(x,θ)(−Xh(x, θ))dθ

for any function h. For computation of the X-ray transform Xf , we adapt the code provided in
Carsten Høilund’s lecture notes [2].

We first reconstruct f when the data k is not noisy. The data k is generated using a finer grid
with 201 × 201 pixels and then downsampled by averaging into 101 × 101 pixels. This is because
that using the same discretization would make the inverse problem look less ill-posed. The results
are shown in Figure 1. The true image of Shepp-Logan is in the middle. The image of Kf is on
the left.
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Figure 1: left: true data; middle: true image, right: reconstructed image

For the following numerical tests, the data k is generated with the same grid as for the recon-
struction, but the data k is polluted by Gaussian random noise. The noise level is compared with
Kf − 2π, not Kf itself, since when f = 0, Kf = 2π in R2. The results are presented in Figure
2, where the reported error is measured in L2 norm. One can see that the magnitude of error
is almost linearly dependent on the level of noise. This confirms the Lipschitz stability result in
Theorem 1.3. Notice that even if the noise level is low when compared with Kf , real information
for small f ’s could be completely lost.

Finally, we reconstruct the same Shepp-Logan phantom with different magnitudes of f . For
these numerical experiments, we generate data on a finer mesh to avoid “inverse crimes”. Although
we do not manually add noise, discretization itself generates noise or artifacts. The results are
displayed in Figures 3. One can see that for both 0.1f and 1f , the reconstructions perform quite
well. Moreover, Figure 3 shows that the quality of image deteriorates if the magnitude of f
becomes larger. For 20f , the reconstruction is already a total failure. This result suggests that
the Lipschitz stability derived for small f ’s no longer holds for large ones. One can also see that
some regularization techniques need to be adopted for the reconstruction, when the ill-posedness
becomes worse as the magnitude of f becomes larger.
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noise
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(b) the reconstruction with 0.1%
relative noise; the error is 0.7289
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(c) the reconstruction with 0.5%
relative noise; the error is 3.5906
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(d) the reconstruction with 1% rel-
ative noise; the error is 7.1819

Figure 2: Recovery with different noises
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(e) reconstruction for 10f
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(g) reconstruction for 20f
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Figure 3: Noiseless reconstruction for different magnitudes of f . The errors are scaled to be in the
same range.
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