Math 8: Homework #7 Solution

3.1 - 4 a
a) \(A = \emptyset, \ C = \{1\}, \ D = \emptyset, \ B = \{2\} \)

3.1 - 9 a,c,g
a) \(R \circ S = \{(3,5),(5,2)\} \)

3.1 - 20 b, c, g
b) \((a, c) \notin BXD \Rightarrow a \notin B \lor c \notin D \)

c) \(AXB\) is cartesian product, not multiplication

g) If \((x, z) \in R\) and \((y, z) \in R\), then it is not necessarily true that \(x = y\)

3.2 - 1 d, i, j
d) This is clearly not reflexive \(a < a\) is not true. Also not symmetric since if \(a < b\), then \(b < a\) is false. This is transitive however.

i) This is not reflexive since \(l\) cannot be perpendicular to itself. It is symmetric. It is not transitive.

j) This is not reflexive (try \((0,-1))\). This is symmetric. This is not transitive (try \((0,0), (1,2), (3,2))\).

3.2 - 4 e, j
e) Since \(x^2 + y^2 = x^2 + y^2\), this relation is reflexive. Since \(x^2 + y^2 = a^2 + b^2 \Rightarrow a^2 + b^2 = x^2 + y^2\), then this relation is symmetric. And since if \(x^2 + y^2 = a^2 + b^2\) and \(a^2 + b^2 = c^2 + d^2\), then \(x^2 + y^2 = c^2 + d^2\), this relation is transitive. So therefore this relation is an equivalence relation. The equivalence classes of \((1,2)\) and \((4,0)\) are circles of respective radii \(\sqrt{5}\) and 4 centered at the \((0,0)\).
j) This relation is reflexive since \(f' = f' \). This relation is symmetric because if \(fRg \) then \(f' = g' \), so \(g' = f' \), therefore \(gRf \). This relation is also transitive. If \(fRg \) and \(gRh \), then \(f' = g' \) and \(g' = h' \), so \(f' = h' \), so \(fRh \). Therefore this relation is an equivalence relation. 3 elements from \(x^2/R \) are: \(x^2, x^2 + 1, x^2 = 2 \). 3 elements from \((4x^3 + 10x)/R \) are: \(4x^3 + 10x + 2, 4x^3 + 10x + 37 \). \(x^3/R \) are functions of the form \(x^3 + c \) where \(c \) is a constant. 7/R are any constant function.

3.2 - 7 c

c) \(\exists p \) such that \(x \equiv_m p \) and \(y \equiv_m p \). Since \(\equiv_m \) is an equivalence relation, then \(p \equiv_m y \) by symmetry. And by transitivity \(x \equiv_m y \). So \(\exists \emptyset = \emptyset \)

3.2 - 8

a) \(R \) is reflexive since for all \(x \in \mathbb{N}, x+x = 2x \) is divisible by 2. Suppose that \(x+y \) is divisible by 2, then clearly \(y+x \) is divisible by 2, so \(R \) is symmetric. If \(x+y \) is divisible by 2 and \(y+z \) is divisible by 2, then \(x+y = 2q \) for some \(q \) and \(y+z = 2r \) for some \(r \). So \(x+z = 2q - y + 2r - y = 2(q + r - y) \). So \(x+z \) is divisible by 2. So \(R \) is transitive. Therefore since \(R \) is reflexive, symmetric, and transitive, it is an equivalence relation.

b) \(S \) is not reflexive, \(1+1 \) is not divisible by 3. \(S \) is symmetric however since if \(x+y \) is divisible by 3, so is \(y+x \). However, \(S \) is not transitive, since \(1+2 \) is divisible by 3 and \(2+1 \) is divisible by 3, but \(1+1 \) is not divisible by 3. So since \(S \) is not reflexive, symmetric, and transitive, it is not an equivalence relation.

3.2 13

Since \(R \) is symmetric and transitive on \(A \). Take any \(a \in A \), then there is a \(b \in A \) such that \(aRb \). Now since \(R \) is symmetric, then \(bRa \). And since \(R \) is transitive, then by combining the above, \(aRa \). So \(R \) is reflexive on \(A \).