A p-ADIC INTERPOLATIVE PROPERTY OF IWASAWA LAMBDA INVARIANTS

JORDAN SCHETTLER

1. FINITELY GENERATED Λ-MODULES

Fix a prime p. Let $\Lambda = \mathbb{Z}_p[[T]]$. Then Λ is a regular local ring with maximal ideal $m = (p, T)$. In particular, Λ is a unique factorization domain. As a topological ring, Λ is complete with respect to the m-adic topology.

Suppose X is a finitely generated Λ-module. Then the Structure Theorem implies that there is a Λ-module homomorphism

$$\phi: X \longrightarrow \mathcal{N} \oplus \bigoplus_{i=1}^{s} \frac{\Lambda}{(p^{m_i})} \oplus \bigoplus_{j=1}^{t} \frac{\Lambda}{(f_j(T)^{n_j})}$$

which is a pseudo-isomorphism (i.e., $\ker(\phi)$, $\coker(\phi)$ are finite) and where each $f_j(T) \in \mathbb{Z}_p[T]$ is irreducible with $f_j(T) \equiv T^{\deg(f_j)} \pmod{p}$. Here r, s, t are nonnegative integers while m_i, n_j are positive integers.

We endow X with the topology under which $(p^m, \omega_n)X$ forms a basis of open submodules of X where $\omega_n = (T + 1)^{p^n} - 1$. Now suppose, in addition, that X is Λ-torsion, so that $r = 0$. We define the characteristic polynomial

$$f_X(T) := \prod_{i=1}^{s} p^{m_i} \prod_{j=1}^{t} f_j(T)^{n_j}$$

and the Iwasawa invariants

$$\lambda(X) := \deg(f_X)$$
$$\mu(X) := \ord_p(f_X).$$

Consider some $\Gamma \cong \mathbb{Z}_p$ as topological groups. Choosing to write Γ multiplicatively, the only nontrivial closed subgroups are $\Gamma_n := \Gamma^{p^n}$, and we have

$$\Gamma/\Gamma_n \cong \mathbb{Z}/(p^n)$$

\footnote{due first to Iwasawa for completed group algebras and then restated by Serre for power series rings}
for all \(n \geq 0 \). We define the completed group algebra as the topological inverse limit

\[
\mathbb{Z}_p[[\Gamma]] := \lim_{\leftarrow n} \mathbb{Z}_p[\Gamma/\Gamma_n].
\]

Fix a topological generator \(\gamma \) of \(\Gamma = \langle \gamma \rangle = \gamma\mathbb{Z}_p \). There is an isomorphism

\[
\Lambda \longrightarrow \mathbb{Z}_p[[\Gamma]] : T \mapsto \gamma - 1,
\]

and it is convenient to interpret \(\Lambda \) as both a power series and a completed group algebra. It is important to note, however, that for a finitely generated, torsion \(\mathbb{Z}_p \)-module \(X \), the characteristic polynomial \(f_X(T) \) depends upon the choice of topological generator \(\gamma \leftrightarrow T + 1 \), but the Iwasawa invariants \(\lambda(X), \mu(X) \) do not depend on this choice.

2. Two Main Examples

Example 1. Suppose \(F \) is a number field. Let \(F_\infty \) denote the cyclotomic \(\mathbb{Z}_p \)-extension of \(F \), i.e., the unique subfield of \(\bigcup_n F(\zeta_{p^n}) \) containing \(F \) such that \(\text{Gal}(F_\infty/F) \cong \Gamma \). The subfields of \(F_\infty \) containing \(F \) form a tower

\[
F \subseteq F_1 \subseteq F_2 \subseteq \ldots \subseteq F_\infty
\]

such that \(\text{Gal}(F_n/F) \cong \mathbb{Z}/(p^n) \) for all \(n \geq 1 \). Let \(M_n \) denote the maximal, unramified abelian \(p \)-extension of \(F_n \), i.e., the \(p \)-Hilbert class field. Then

\[
X(F_n) := \text{Gal}(M_n/F_n)
\]

is naturally a discrete module over \(\mathbb{Z}_p[\text{Gal}(F_n/F)] \cong \mathbb{Z}_p[\Gamma/\Gamma_n] \). Hence

\[
X(F_\infty) := \lim_{\leftarrow n} X(F_n)
\]

is a compact module over \(\mathbb{Z}_p[[\Gamma]] \cong \Lambda \). It turns out that \(X(F_\infty) \) is a finitely generated, torsion \(\Lambda \)-module, and this along with the Structure Theorem can be used to prove Iwasawa’s growth formula for the \(p \)-parts of the class numbers \(|\text{Cl}(F_n)| \) of \(F_n \):

\[
\text{ord}_p |\text{Cl}(F_n)| = \lambda(F)n + \mu(F)p^n + \nu(F)
\]

for all \(n \gg 0 \) where \(\lambda(F) = \lambda(X(F_\infty)), \mu(F) = \mu(X(F_\infty)) \), and \(\nu(F) \in \mathbb{Z} \) is a constant. Iwasawa conjectured \(\mu(F) = 0 \). This conjecture has been verified when \(F \) is abelian over \(\mathbb{Q} \) or an imaginary quadratic field. The conjecture also holds for finite \(p \)-extensions of \(F \) whenever the conjecture holds for \(F \) itself.
Example 2. Now suppose \(E \) is an elliptic curve over a number field \(F \), and let \(E[p^\infty] \) denote the \(p \)-primary part of the group \(E(\overline{F}) \) for a fixed algebraic closure \(\overline{F} \) of \(F \). For any algebraic extension \(M/F \), we take \(G_M = \text{Gal}(\overline{M}/M) \) and let \(H^*(M,-) = H^*(G_M,-) \) denote group cohomology. Define the \(p \)-primary Selmer group by

\[
\text{Sel}_E(M)_p = \ker \left(H^1(M, E[p^\infty]) \to \prod_v H^1(M_v, E[p^\infty])/\text{im}(\kappa_v) \right)
\]

where the product runs over all places \(v \) of \(M \) and

\[
\kappa_v : E(M_v) \otimes (\mathbb{Q}_p/\mathbb{Z}_p) \to H^1(M_v, E[p^\infty])
\]

is the Kummer homomorphism for \(M_v \), the completion of \(M \) at \(v \). This Selmer group appears in the short exact sequence

\[
0 \to E(M) \otimes \mathbb{Q}_p/\mathbb{Z}_p \to \text{Sel}_E(M)_p \to \text{III}_E(M)_p \to 0
\]

(2.1)

where \(\text{III}_E(M)_p \) is the \(p \)-primary part of the (conjecturally finite) Shafarevich-Tate group.

There is a \(\mathbb{Z}_p \)-linear action of \(\Gamma \) on \(H^1(F_\infty, E[p^\infty]) \) described by

\[
g \cdot [\phi] := [\phi_{\tilde{g}}]
\]

where \(\tilde{g} \in G_F \) extends \(g \in \Gamma \) and for \(\alpha \in G_{F_\infty} \)

\[
\phi_{\tilde{g}}(\alpha) = \tilde{g} \phi(\tilde{g}^{-1} \alpha \tilde{g}).
\]

It is easy to show that \(\text{Sel}_E(F_\infty)_p \) is \(\Gamma \)-invariant under this action, and every \([\phi] \in H^1(F_\infty, E[p^\infty]) \) is killed by a power of \(T \leftrightarrow \gamma - 1 \), so \(\text{Sel}_E(F_\infty)_p \) is a torsion \(\Lambda \)-module which we give the discrete topology. We define the \(p \)-Pontryagin dual functor on topological \(\Lambda \)-modules via

\[
(-)^\vee := \text{Hom}_{\text{cont}}(-, \mathbb{Q}_p/\mathbb{Z}_p)
\]

with the compact-open topology, the diagonal \(\Gamma \) action, and where \(\Gamma \) acts trivially on \(\mathbb{Q}_p/\mathbb{Z}_p \). This functor interchanges compact and discrete \(\Lambda \)-modules. Thus

\[
X_E(F_\infty) := \text{Sel}_E(F_\infty)^\vee_p
\]

is a compact \(\Lambda \)-module. In fact, \(X_E(F_\infty) \) is always finitely generated over \(\Lambda \). Assume now that \(E \) has good ordinary reduction at all primes of \(F \) lying above \(p \). Mazur conjectured that \(X_E(F_\infty) \) is \(\Lambda \)-torsion in this case, and he proved the Control Theorem, which states that the natural maps

\[
\text{Sel}_E(F_n)_p \to \text{Sel}_E(F_\infty)^\Gamma_n
\]
have finite kernel and cokernel of bounded order as n varies where F_n is the nth layer in the cyclotomic \mathbb{Z}_p-extension F_∞ of F. The exact sequence in Equation 2.1 shows that

$$\text{Sel}_E(F)_p$$

is finite \iff $E(F), \text{III}_E(F)_p$ are finite,

and, in this case, we have an analog of Iwasawa’s Growth Formula:

$$\text{ord}_p |\text{III}(F_n)| = \lambda_E(F)n + \mu_E(F)p^n + \nu_E(F)$$

for all $n \gg 0$ where $\lambda_E(F) = \lambda(X_E(F_\infty)) - \text{rank } E(F_\infty)$, $\mu = \mu(X_E(F_\infty))$, and $\nu_E(F) \in \mathbb{Z}$ is a constant. Mazur’s Control Theorem along with Nakayama’s Lemma for compact Λ-modules can be used to show that $X_E(F_\infty)$ is indeed finitely generated and torsion over Λ when $\text{Sel}_E(F)_p$ is finite. The modularity theorem shows that Mazur’s conjecture is true when E is defined over \mathbb{Q} and F is an abelian number field by the work of Rubin (for CM-fields) and Kato (in general).

If E' is another elliptic curve over F which is isogenous to E, then $\lambda_E(F) = \lambda_{E'}(F)$, but $\mu_E(F)$ may be different than $\mu_{E'}(F)$ and, in fact, there is a precise formula relating these μ-invariants due to Peter Schneider. It is conjectured that when $F = \mathbb{Q}$, there is an isogenous elliptic curve E' such that $\mu_{E'}(F) = 0$, but there are counterexamples to the analogous statement when $F \neq \mathbb{Q}$.

3. Statements

Lemma 3. Let X be a finitely generated Λ-module. Then X is finitely generated over \mathbb{Z}_p if and only if X is Λ-torsion with $\mu(X) = 0$.

Proof. This follows immediately from the Structure Theorem. \qed

Theorem 4. Let X be a finitely generated, compact Λ-module with a \mathbb{Z}_p-linear action of a cyclic group G of order p^n where $n \geq 1$. Take G_p to be the order p subgroup of G. Suppose that $Y := X_{G_p}$ is Λ-torsion with $\mu(Y) = 0$. Then X is Λ-torsion with $\mu(X) = 0$ and

$$\lambda(X) \equiv \lambda(Y) \pmod{p^n(p - 1)}.$$

Moreover, we have a ‘Kida formula’

$$\lambda(X) = p\lambda(Y) - (p - 1)\chi(X)$$

where

$$\chi(-) := \dim_{\mathbb{F}_p} H^2(G_p, -) - \dim_{\mathbb{F}_p} H^1(G_p, -)$$

is the Euler characteristic for G_p.

Proof. Let \(g \) be a generator of \(G \), so that \(g_p := g_p^{-1} \) is a generator of \(G_p \). Note that \(\mathbb{Z}_p G_p \) is a compact local ring with maximal ideal \(m_p = (p, g_p - 1) \). By assumption and the lemma, \(Y = X / ((g_p - 1)X) \) is finitely generated over \(\mathbb{Z}_p \), so \(X / m_p X \) is finitely generated over \(\mathbb{Z}_p \) and whence over \(\mathbb{Z}_p G_p \). Thus Nakayama’s lemma implies that \(X \) is finitely generated over \(\mathbb{Z}_p \) and whence over \(\mathbb{Z}_p G_p \). Using the lemma in the reverse direction then shows that \(X \) is \(\Lambda \)-torsion with \(\mu(X) = 0 \).

The canonical exact sequence of \(G \)-modules

\[
X \longrightarrow Y \longrightarrow 0
\]

induces an exact sequence of adjoints

\[
0 \longrightarrow \alpha(Y) \longrightarrow \alpha(X)
\]

where \(\alpha(-) = \text{Hom}_{\mathbb{Z}_p}(-, \mathbb{Z}_p) \). The adjoints \(\alpha(X), \alpha(Y) \) are \(G \)-modules via the usual diagonal action and are \(\Lambda \)-modules via \((\lambda \cdot \psi)(x) = \psi(\lambda x) \) for \(\lambda \in \Lambda \) and homomorphisms \(\psi \). With this module structure, \(\alpha(X), \alpha(Y) \) are finitely generated, torsion \(\Lambda \)-modules with the same Iwasawa invariants as \(X, Y \), respectively. Moreover, there are no nontrivial homomorphisms from a finite group into \(\mathbb{Z}_p \), so \(\alpha(X), \alpha(Y) \) are \(\mathbb{Z}_p G \)-modules which are free of finite rank over \(\mathbb{Z}_p \). In particular, \(\alpha(Y) \) is isomorphic to \(\alpha(X)^{\mathbb{G}_p} \), the \(\mathbb{Z}_p \)-pure submodule of \(\alpha(X) \) which is annihilated by \(g_p^{p^n - 1} - 1 \). Thus the quotient \(Q := \alpha(X) / \alpha(Y) \) is free of finite rank over \(\mathbb{Z}_p \) and is annihilated by \(\Phi_p^n(g) \) where \(\Phi_p^n \) is the \(p^n \)th cyclotomic polynomial. Therefore \(Q \) is a torsion free module over the ring

\[
\frac{\mathbb{Z}_p G}{\Phi_p^n(g)\mathbb{Z}_p G} \cong \mathbb{Z}_p[\theta_p^n]
\]

where \(\theta_p^n \) is a primitive \(p^n \)th root of unity in \(\mathbb{Q}_p \). Now \(\mathbb{Z}_p[\theta_p^n] \) is a PID, so, in fact, \(Q \) is free of finite rank over \(\mathbb{Z}_p[\theta_p^n] \). Hence we have a short exact sequence of \(\mathbb{Z}_p \)-modules

\[
0 \longrightarrow \alpha(Y) \longrightarrow \alpha(X) \longrightarrow \mathbb{Z}_p[\theta_p^n]^{\oplus r} \longrightarrow 0
\]

for some nonnegative integer \(r \). Taking \(\mathbb{Z}_p \)-ranks yields

\[
\lambda(X) = \lambda(Y) + rp^{n-1}(p - 1),
\]

which proves the congruence. Using the same reasoning as above we obtain an exact sequence of \(\mathbb{Z}_p G_p \)-modules

\[
0 \longrightarrow \alpha(Y) \longrightarrow \alpha(X) \longrightarrow \left(\frac{\mathbb{Z}_p G_p}{\Phi_p(g_p)\mathbb{Z}_p G_p} \right)^{\oplus rp^{n-1}} \longrightarrow 0.
\]
Now we use duality and the additivity of the Euler characteristic χ to obtain

\[(4.3) \quad \chi(X) = -\chi(\alpha(X)) = -\chi(\alpha(Y)) - rp^{n-1}\chi(\mathbb{Z}_p G_p) + rp^{n-1}\chi(\Phi_p(g_p)\mathbb{Z}_p G_p) = -\chi(Y) + rp^{n-1}.
\]

Combining [4.2] and [4.3] gives

\[
\frac{\lambda(X) - \lambda(Y)}{p - 1} = rp^{n-1} = \lambda(Y) + \chi(X)
\]

which yields the ‘Kida formula’ [4.1].

Combining the above theorem with results from [Iwa81] and [HM99], we get the following consequence.

Corollary 5. Fix a prime $p \geq 5$. Let F_∞ be the cyclotomic \mathbb{Z}_p-extension of an abelian number field F and E/\mathbb{Q} be an elliptic curve having good, ordinary reduction at all primes of F lying over p. Suppose L, K are number fields with cyclotomic \mathbb{Z}_p-extensions $L_\infty \supseteq K_\infty \supseteq F_\infty$ such that L_∞/F_∞ is cyclic of degree p^n for $n \geq 1$ and L_∞/K_∞ is cyclic of degree p. Then

\[
\lambda(L) = p\lambda(K) + (p - 1)(\chi(O_{L_\infty}^\times) + |S|) \\
\equiv \lambda(K) \pmod{p^{n-1}(p - 1)}
\]

where $\chi(-)$ denotes the Euler characteristic for $\text{Gal}(L_\infty/K_\infty)$ and S is the set of primes in L_∞ which ramify in L_∞/K_∞ and do not lie over p. If, in addition, $\mu_E(F) = 0$, then

\[
\lambda_E(L) = p\lambda_E(K) + (p - 1)(|P_1| + 2|P_2|) \\
\equiv \lambda_E(K) \pmod{p^{n-1}(p - 1)}
\]

where P_1 is the set of primes in S at which E has split, multiplicative reduction and P_2 is the set of primes w in S at which E has good reduction and $E(L_\infty, w)[p] \neq 0$.

References
