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Abstract. We propose a deep learning algorithm for seismic interface detection,

with the neural networks trained by synthetic high-frequency seismograms, efficiently

generated by the frozen Gaussian approximation (FGA). The usage of high-frequency

data is advantageous due to the fact that it can provide high resolution of substructures.

However, generation of sufficient synthetic high-frequency data sets for training neural

networks are, in general, computationally challenging to well-known methods. This

bottleneck is overcome by a highly scalable computational platform built upon the

FGA, which comes from the semiclassical theory and approximates the wavefields by

a sum of fixed-width (frozen) Gaussian wave packets.

We first generate the time series of synthetic seismogram data by FGA, which

contains accurate traveltime information (from the ray path) but not exact amplitude

information (with asymptotic errors not shrinking to zero even at extremely fine

numerical resolution). With the synthetic seismogram generated by the FGA, we

build network models using an open source API, GeoSeg, developed using Keras and

Tensorflow. In particular, networks using encoder-decoder and UNet architectures,

despite only being trained on FGA data, can detect an interface with a high success rate

from the seismograms generated by the spectral element method (a different numerical

method with exact amplitude information at fine numerical resolution). All the tests

are done for P-waves (acoustic) and P- and S-waves (elastic), respectively.

Keywords: seismic interface detection, convolutional neural network, high-frequency

data, elastic wave equation, frozen Gaussian approximation
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1. Introduction

Various geophysical aspects, e.g., tectonics and geodynamics [1, 18, 19, 29], can be

better understood by images of substructures (e.g. locations of seismic interfaces) of the

Earth generated by seismic tomography. Neural networks excel at recognizing shapes,

patterns and sorting relevant from irrelevant data; this makes them good for image

recognition and sorting images. In particular, convolutional neural networks allowed for

rapid advances in image classification and object detection [13], and in fact networks

have been created for specific tasks, such as, fault detection [2], earthquake detection,

ConvNetQuake [17], DeepDetect [26] and seismic phase arrival times, PhaseNet [30].

One obstacle in building a neural network to detect seismic interface is having an

ample data set for training. There is constant waveform data being collected by seismic

stations across the globe, and generating data by resampling of this seismic data to train

a network can be done but is limited by the Nyquist frequency. Seismic data can not be

resampled with a Nyquist frequency lower than the highest usable frequency in the data,

thus high frequency data is usually preferred as it tends to lead to improved resolution

of the substructures. Other obstacles lie within the differences in geological locations,

natural phenomenon (e.g. earthquakes) and unnatural phenomenon (e.g. fracking).

Using these data sets to train a general neural network is a daunting task, and thus it

is natural to use synthetic data for the training of neural networks.

The dominant frequency of a typical earthquake is around 5 Hz [16], which

is considered high-frequency thus leading to demanding, and at times, unaffordable

computational cost. This makes generation of sufficient synthetic high-frequency data

sets for training neural networks computationally challenging to well-known methods.

We overcome this difficulty by building a highly scalable computational platform upon

the frozen Gaussian approximation (FGA) method for elastic wave equation [8], which

comes from the semiclassical theory and approximates the wavefields by a sum of fixed-

width (frozen) Gaussian wave packets. The dynamics of each Gaussian wave packet

follow ray paths with the prefactor amplitude equation derived from an asymptotic

expansion on the phase plane. The whole set of governing equations are decoupled for

each Gaussian wave packet, and thus, in theory, each corresponding ODE system can

be solved on its own process, which makes the algorithm embarrassingly parallel.

Using synthetic data, Araya-Polo et al. perform inverse tomography via fully

connected neural networks with great success in [3] . Their networks use low dimensional

features extracted from seismic data as input. Using deeper convolutional neural

networks trained on seismogram data may allow the network to pick up on previously

unknown signals. The increase in input dimensionality necessitates more sophisticated

deep learning techniques than those presented in [3].

In this paper, we propose a deep learning algorithm for seismic interface detection,

with the neural networks trained by synthetic high-frequency seismograms. We first

generate the time series of synthetic seismogram data by FGA, with which, we
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build network models using an open source API, GeoSeg, developed using Keras and

Tensorflow. We observe that, networks using encoder-decoder and UNet architectures,

despite only being trained on FGA data, can detect an interface with a high success

rate from the seismograms generated by the spectral element method, which represent

true seismic signals when fine time step and mesh size are used in the computation.

This is due to the fact that, although FGA does not carry exact amplitude information

(with asymptotic errors proportional to the ratio of wavelength over domain size), it

contains accurate traveltime information, which the trained neural networks rely more

on to detect the location of seismic interfaces. We present the perfomance by considering

a simple two-dimensional layered velocity model, with synthetic data generated for both

P- and S-waves. We remark that, although it is straightforward in geophysics to identify

traveltime as a key factor to detect the interface location for this example, it is not

always natural for the trained networks to automatically use this physical intuition.

The paper is outlined as follows: In Section 2, we introduce briefly the mathematical

background of FGA and how the synthetic data is generated based on it. In Section 3,

we describe the details of the network design. In Section 4, we give two examples to show

the performance of networks, and test them by the data generated using the spectral

element software package SPECFEM3D‡. We make conclusive remarks in Section 5.

2. Frozen Gaussian approximation

We summarize the mathematical theory of FGA in this section; for full exposition and

details for the elastic wave equation, see [8]; and for the acoustic wave equation, see [4].

The core idea of the FGA is to approximate seismic wavefields by fixed-width Gaussian

wave packets whose dynamics follow ray paths with the prefactor amplitude equation

derived from an asymptotic expansion on the phase plane. The ODE system governing

the dynamics for each wave packet are decoupled. In theory, each ODE system can

be solved on its own process, hence it is embarrassingly parallel. The implementation,

as in previous works [8], is with Fortran using message passage interface (MPI). The

implementation has a speed up factor of approximately 1.94; hence, doubling the number

of cores nearly halves the computational time.

The equation for the forward modeling to generate the training data set we use is

the elastic wave equation. Assuming the linear, isotropic Earth model [6], it is,

ρ∂2t u = (λ+ µ)∇(∇ · u) + µ∆u + F, (1)

where ρ, λ, µ, : R3 → R is the material density, the first and second Lamé parameters

respectively and u : R× R3 → R3 is displacement. The differential operators are taken

in terms of the spacial variables. Eq. (1) has a natural separation into divergence and

curl free components and can also be written as

∂2t u = c2p∇(∇ · u)− c2s∇×∇× u + Fρ. (2)

‡ https://geodynamics.org/cig/software/specfem3d/
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This decomposition represents P-wave, and S-wave respectively with velocities

c2p(x) =
λ(x) + 2µ(x)

ρ(x)
, c2s (x) =

µ(x)

ρ(x)
, (3)

with cp(x) representing the P-wave speed and cs(x) representing the S-wave speed.

2.1. The FGA Formulation

We introduce the FGA formula for the elastic wave equation, eq. (2), with initial

conditions {
u(0,x) = fk(x),

∂tu(0,x) = gk(x),
(4)

where the superscript k represents the wavenumber. For a sake of simplicity and clarity,

we shall also use the following notations:

• i =
√
−1 : the imaginary unit;

• subscripts/superscripts “p” and “s” indicate P- and S-waves, respectively;

• ± indicates the two-way wave propagation directions correspondingly;

• N̂p,s(t): unit vectors indicating the polarized directions of P- and S-waves;

• n̂p,s: the initial directions of P- and S-waves.

The FGA approximates the wavefield uk(t,x) in eq. (1) by a summation of dynamic

frozen Gaussian wave packets,

ukF(t,x) ≈
∑

(q,p)∈Gp
±

apN̂pψ
k
p

(2π/k)9/2
eikP p·(x−Qp)− k

2
|x−Qp|2δqδp

+
∑

(q,p)∈Gs
±

asN̂ sψ
k
s

(2π/k)9/2
eikP s·(x−Qs)− k

2
|x−Qs|2δqδp,

(5)

with the weight functions

ψkp,s(q,p) =

∫
αkp,s(y, q,p)e−ikp·(y−q)−

k
2
|y−q|2 dy, (6)

αkp,s(y, q,p) =
1

2kcp,s|p|3
(
kfk(y)cp,s|p| ± igk(y)

)
· n̂p,s. (7)

In eq. (5), Gp,s
± refers to the initial sets of Gaussian center q and propagation vector p for

P- and S-waves, respectively. In eq. (7), the “±” on the right-hand-side of the equation

indicate that the αkp,s correspond to (q,p) ∈ Gp,s
± . We refer [8] for the derivation, accuracy

and explanation of FGA, and only summarize the formulation as follows.

The ray path is given by the Hamiltonian system with Hamiltonian H(Q,P ) =

±cp,s(Q)|P |. The “±” give the two-way wave propagation directions; e.g. for the “+”
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wave propagation, (q,p) ∈ Gp,s
+ , the Gaussian center Qp,s(t, q,p) and propagation vector

P p,s(t, q,p) follow the ray dynamics
dQp,s

dt
= cp,s(Qp,s)

P p,s

|P p,s|
,

dP p,s

dt
= −∂Qcp,s(Qp,s)|P p,s|,

(8)

with initial conditions

Qp,s(0, q,p) = q and P p,s(0, q,p) = p. (9)

The prefactor amplitudes ap,s(t, q,p) satisfy the following equations, where S-waves have

been decomposed into SH- and SV-waves,

dap
dt

= ap

(
±
∂Qp

cp · P p

|P p|
+

1

2
tr
(
Z−1p

dZp

dt

))
, (10)

dasv
dt

= asv

(
±
∂Qs

cs · P s

|P s|
+

1

2
tr
(
Z−1s

dZs

dt

))
− ash

dN̂ sh

dt
· N̂ sv, (11)

dash
dt

= ash

(
±
∂Qs

cs · P s

|P s|
+

1

2
tr
(
Z−1s

dZs

dt

))
+ asv

dN̂ sh

dt
· N̂ sv, (12)

with the initial conditions ap,sv,sh = 23/2, and N̂ sv and N̂ sh are the two unit directions

perpendicular to P s, referring to the polarized directions of SV- and SH-waves,

respectively. With the short-hand notations,

∂z = ∂q − i∂p, Zp,s = ∂z(Qp,s + iP p,s). (13)

For a flat interface z = z0, the wave speeds of the two layers near the interface are

assumed to be,

cp(x) =

{
c∨p (x) z > z0

c∧p (x) z < z0
, cs(x) =

{
c∨s (x) z > z0

c∧s (x) z < z0
. (14)

As a Gaussian wave packet hits an interface, several of its quantities need to be defined.

First, ap,s and P p,s, are determined by Snell’s Law and the Zoeppritz equations [27].

If one denotes θi, θr, θt to be the P-wave incident, reflection and transmission angles,

and φr, φt to be the SV-wave reflection and transmission angles, respectively, then the

Zoeppritz equations read as

M


arep
ares
atrp
atrs

 =


cos(θr)

sin(θr)

cos(2φr)

cos(2θr)

 ainp , (15)
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with the matrix M as

M =


cos(θr)

c∧p
c∧s

sin(φr)
c∧p
c∨p

cos(θt) − c∧p
c∨s

sin(φt)

− sin(θr)
c∧p
c∧s

cos(φr)
c∧p
c∨p

sin(θt)
c∧p
c∨s

cos(φt)

− cos(2φr) − sin(2φr)
ρ2
ρ1

cos(2φt) −ρ2
ρ1

sin(2φt)

sin(2θr) −(
c∧p
c∧s

)2 cos(2φr)
ρ2(c∧p c

∨
s )

2

ρ1(c∨p c
∧
s )

2 sin(2θt)
ρ2(c∧p )

2

ρ1(c∧s )
2 cos(2φt)

 , (16)

where ρ1,2 are the densities for the layers 1 and 2, respectively. Let N denote the normal

to the interface at the point of incidence then Qin,re,tr is the Gaussian center at the point

of incidence, and Pin,re,tr corresponds to the propagation vector of incident, reflected and

transmitted Gaussian wave packet for either P- or S-waves. Qin = Qre = Qtr and Pre,tr

is updated as follows

Ptr,re
p,s = Pin + sgn(Ptr,re

p,s )
(√
|Pin|ntr,re

p,s −
∣∣|Pin| − (Pin ·N)2

∣∣− (P ·N)
)
N, (17)

where ntr,re
p,s denotes the index of refraction for the new respective direction, e.g.

ntr
p = c∨p/c

∧
p . Also Zp,s needs to be updated, requiring use of conservation of level

set functions defined in the Eulerian frozen Gaussian approximation formula [14, 25].

∂zQ
re,tr = ∂zQ

in F,

∂zP
re,tr = ∂zP

inW − |Pre,tr|
c(Qre,tr)Pre,tr ·N

(
∂zQ

re,tr · ∇c(Qre,tr)− ∂zQin · ∇c(Qin)
)
N,

(18)

F and W are two 3× 3 matrices, F T = W−1, and

F =

 1 0 0

0 1 0

(κ− 1) px
pinz

(κ− 1) py
pinz

κp
re,tr
z

pinz

 , with κ =

(
c(Qre,tr)

c(Qin)

)2

.

2.2. Generation of the Synthetic Data

Large and diverse datasets can reduce generalization error of a network. The data points

used for our experiments are synthetic seismograms. Given an initial condition, as in

eq. (4), the initial wave packet decomposition can be saved for a variety of tests. This

means the same data can be loaded as the parameters vary from data point to data

point. If the initial condition is independent of the wave velocities, the same initial wave

packet decomposition can be used to generate seismograms with varying velocities, and

varying interface depth. Hence for the forward simulation, loading the initial wave packet

decomposition, running an ODE solver, and recording the seismograms are the only tasks

required. As the ODE system for the FGA is uncoupled for each wave packet, the speed

of a single simulation greatly benefits from a parallel implementation. An example of

the efficiency and data sets generated are included in Section 4.



Deep Learning Seismic Interface Detection using FGA 7

3. Network Design

The goal of Full Waveform Inversion (FWI) is to extract wave speed data from seismic

data. In its purest form this is a regression type problem and was addressed with

fully connected networks in [3]. Our work approaches the problem from a segmentation

perspective. We address a simplified version of FWI and attempt to detect subsurface

structures by classifying them as regions of low or high wavespeed, thus transforming the

regression problem into a segmentation problem. These sorts of segmentation problems

have been addressed with great success by CNNs [21].

Semantic segmentation of images is the process of labeling each pixel in an image

with a class label for which it belongs. In semantic segmentation problems the correct

pixel label map is referred to as the ground truth. In our work the “image” is the

one-dimensional slice in the depth direction which we normalize and partition into N

bins which act as our “pixels”. Each bin is then labeled depending on whether it came

from a region of high or low velocity. These velocity regions are our classes. Our work

diverges substantially from traditional semantic segmentation of images, as our input

is time series data which is then transformed by the network. This is opposed to the

traditional case where the input itself is labeled.

The goal of our network is to infer the presence of high and low wavespeed regions

and the interfaces between them from seismogram data. The input to the network is

X ∈ RM×3×r. Where M is the number of timesteps and r is the the number of receivers.

The output of the network is

N (X) = (pij),
i ∈ {1, ...,M}
j ∈ {1, 2}

, (19)

where pij is the probability that the ith bin belongs to the jth class. For example, possible

output and groundtruth could be 0.1 0.9

0.2 0.8

0.55 0.45

 ,
1

1

1

 .
Here, at depth indexed by 1, the network believes with 10% probability that this bin

is a low speed region and with 90% probability that it is a high speed region, and

similarly for the other rows. The accuracy of a given inference is found by taking the

row-wise argmax of the matrix, resulting in a column vector, and then evaluating the

number of correctly predicted values against the ground truth for the given sample. If

one instead takes a row-wise max, one receives a vector whose index represents depth,

and whose value represents the probability that the given depth belongs to the speed

region predicted by the network. We call this value the heatmap. For instance, the

above example has 66% accuracy, and heat map [0.9, 0.8, 0.55]T. The training loss for

the neural network is categorical cross-entropy.
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3.1. Model Architectures

The models were built using an open source API, GeoSeg§, we developed using Keras

and Tensorflow. GeoSeg allows us to select a UNet, fully convolutional segmentation

network, or feed forward NN as a base meta-architecture, using any of residual, dense,

or convolutional blocks, with or without batch normalization [20, 21, 10, 11, 12]. GeoSeg

also allows for easy hyper parameter selection for model and block architectures, and

for training optimizers and parameters. The optimizer for all the models was NADAM

using default parameters [5].

The network structures are described by their meta-architecture and their blocks.

The meta-architecture describes the global topology of the network and how the blocks

interact with each-other. Each block either begins or ends with a tranisition layer that

will down or up sample the temporal axis respectively. The block itself preserves the

dimensions of its input.

Meta-Architectures. Other than the feed-forward CNN’s, all models are variants

of Encoder-Decoder Networks similar to SegNet [21]. The input is fed into the encoder

branch which down samples the temporal axis by a factor of 2N where N is the number

of layers in the branch. The decoder branch then up samples the temporal dimension

by a factor of 2N . The last layer is a convolutional layer followed by a solftmax which

outputs predictions as described above.

GeoDSegB-N refers to a deep network with an N-block long of block type B

encoder branch that feeds directly into an N-block long of the same block type decoder

branch. GeoDUB-N refers to a UNet architecture from [20]. These architectures have

proven highly efficient at image segmentation for road detection [28] and in biomedical

applications [20]. These networks feed their input into an encoder branch, bridge block,

and then a decoder branch as in GeoSeg. The defining feature of these networks are the

“rungs” connecting the encoder and decoder branches (see Figure 1). In this way the

network can incorporate both low and high resolution data [20, 28].

Convolutional Layers. As in [11], we use Batch-Normalization [12] to help smooth

training. The layer is broken first into a bottleneck convolution followed by the main

convolution. The bottleneck is a convolution which uses a 1x1 kernel to expand the

number of feature channels before performing the full convolution. It is suggested in

[9, 22] that such a bottleneck can reduce the number of necessary feature maps and

so improve computational efficiency. We us Rectified Linear Units (ReLUs) [7] for our

activation. Unlike [11], our segmentation problem is one-dimensional, and so we use

k×1 filter kernels as opposed to the traditional k×k. For our networks we chose k = 3.

Dense Blocks. Though GeoSeg supports multiple block types all the models

reported in this paper use Dense blocks. These are stacks of convolutional layers as shown

in Figure 2. The defining features of these blocks, introduced in [11] is that every layer

receives input from all previous layers via concatenation. Such architectures have been

§ https://github.com/KyleMylonakis/GeoSeg
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(a) GeoDSegDe-2 (b) GeoDUDe-2

Figure 1. Meta-architectures of GeoDSegDe-2 (a) and GeoDUDe-2 (b): Notice the

presence of rungs and bridge in the UNet architecture.

shown to greatly improve results in image classification while improving computational

efficiency [11].

(a) Convolutional Layer (b) Dense Block

Figure 2. Block compositions of a basic convolutional layer (a) and a corresponding

dense block (b)

In [3], Araya-Polo et al. perform inverse tomography via Deep Learning and

achieve impressive results. Our model is fundamentally different than GeoDNN in

that: GeoDNN is a fully connected network whereas GeoSeg’s is fully convolutional,

and GeoDNN uses semblance panels from CMP data as features for the network and

GeoSeg uses the raw seismograph data. Moreover Araya-Polo et al. address the FWI

problem and provide the wave speeds in a two dimensional region and we tackle high
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and low velocity detection, shifting the problem from regression to segmentation.

4. Experiments and Results

Twenty four models were proposed by considering all choices of meta-architectures,

blocks, in two and three block configurations with and without batch normalization.

Each model was trained for 3500 epochs with an 80 percent split between training

and evaluation data. For every dataset the high velocity region is always below the

low velocity region. The training data set only contains time series data generated

by the FGA. Separate models were trained for data sets containing only P-waves and

those containing both P- and Ss waves. Models without batch normalization had poor

evaluation accuracy and loss, and so will not be reported. All models were trained with

dropout probability of 50% [23].

Model evaluations were performed with data generated by the FGA and SPECFEM.

Notably, the networks are never trained with any SPECFEM data. This was to

investigate whether the network was sensitive to the asymptotic error produced by the

FGA. We remark in [15, 24], it was shown even small pertubations in input can affect

network classification results. Testing on SPECFEM data was also initially proposed to

see if neural networks could distinguish between different numerical schemes solutions to

problems. This question is not directly addressed in this paper, but remains for future

work. All of the models were trained on the Google Cloud Platform with Keras 2.2.2

and Tensorflow 1.10.0 as a backend using a single NVIDIA Tesla V100 GPU.

4.1. results from P-wave data set

The P-wave data set is generated with a computation domain of [0, 2]km×[0, 2]km×[0, 2.5]km

with a source centered at x0 = (0.5, 0.5, 0.5)km with source function

fkj (x) = cos(k(xj − x0,j)) exp
(
− 2k|x− x0|2

)
, (20)

and wavenumber k = 128, which is roughly 20.37 Hz. The stations are located on the

surface at S1 : (1.5, 1.5, 0) km, S2 : (1.8, 1.5, 0) km, S3 : (1.6, 1.9, 0) km. The interface is

a plane, z = z0 that varies from depth 1km to 2.5 km. Above the interface the wavespeed

varies from .78 km/s to 1.22 km/s, below the interface the wavespeed varies from 1.29

km/s to 1.56 km/s. As the initial condition is independent of the wavespeed only one

wave packet decomposition needs to be computed and saved for all data points to be

generated. This saves a tremendous amount of time as only the ODE system needs to be

solved for varies wavespeeds and interface heights. The data is generated on the cluster,

knot, at the center for scientific computing at UC Santa Barbara‖, using 64 processes

with a 4th order Runge-Kutta solver for the ODE system. 804672 total beams are used

and each data point is generated in approximately 2.5 minutes. This is compared to

‖ http://csc.cnsi.ucsb.edu/clusters/knot
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SPECFEM3D which takes is approximately 45 minutes to generate a data point. Using

the FGA, there are 7790 total data points generated. Each data point is a (6000,3,3)

tensor. Prior to training, we further down sample the temporal dimension by a factor of

25 and normalize the amplitude of the seismogram data. All the networks were trained

with a mini-batch size of 256 examples.

(a) Computational Domain (b) Seismogram

Figure 3. P-wave set up. Wavenumber k=128. (a) The is source located at (.5,.5,.5)km

as a star and the 3 receivers located on the surface, the interface presented is at a

depth of 2km. (b) A typical data point, a collection of 3 seismograms from the forward

simulation using the FGA.

The only models which had above a 90% evaluation accuracy were GeoDSegDe-

2, GeoDSegDe-3, and GeoDUDe-3. The training and evaluation loss and accuracy are

shown in Fig. 4. GeoDUDe-3 had the best evaluation accuracy with 96.97% on the

FGA dataset, with GeoDSegDe-3 being a very close second. The evaluation accuracy

between two and three branch layer models is significant. Visualizations of results for

GeoDUDe-3 are shown in Figures 6, 5. The reported losses and accuracies for all the

networks are shown in Table 1.

Table 1. P-Data Network Comparisons.

Network Eval. Acc. Eval. Loss Train. Acc. Train. Loss SEM Acc.

GeoDSegDe-2 91.22 % 0.1957 91.19 % 0.1935 90.32 %

GeoDSegDe-3 96.42 % 0.08457 98.24 % 0.05284 93.83 %

GeoDUDe-3 96.97 % 0.09700 98.86 % 0.03388 94.29 %

The various networks were also evaluated on 100 samples generated by

SPECFEM3D instead of the FGA. On this dataset each neural network had only

slightly worse evaluation accuracy than on data generated by the FGA with a maximum

difference between the evaluation accuracies of the datasets being 2.68%.
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(a) Evaluation Accuracy (b) Training Accuracy

Figure 4. P-wave training results. The evaluation dataset for this figure only

contains data generated by the FGA. Accuracy is computed as the total number correct

classifications.

(a) FGA: Actual (b) FGA: Predicted (c) FGA: Difference

(d) SEM: Actual (e) SEM: Predicted (f) SEM: Difference

Figure 5. GeoDUDe-3: P-wave predictability. Each column of pixels represents

a sample. The value of each pixel describes whether the material at the depth

corresponding to that pixel’s column belongs to either the high or low wavespeed region.
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(a) FGA (b) SEM

Figure 6. GeoDUDe-3: P-wave heat-map distribution comparison. Regions of low

confidence correspond to areas where an interface is likely. Recall the heatmap is a

sample is the vector of probabilities that a depth indicated by the index belongs is

correctly classified.

4.2. results from P,S-wave data set

The P,S-wave dataset is generated with a computation domain of [0, 2] km×[0, 2]

km×[0, 3] km with a source centered at x0 = (0.5, 0.5, 0.5) km with source function

based off the Greens function:

fkj (x) =
3∑
i=1

(xi − xi,0)(xj − xj,0)
4πρc2pr

3
Fj(t0 − r/cp)+

r2δij − (xi − xi,0)(xj − xj,0)
4πρc2sr

3
Fj(t0 − r/cs)+

3(xi − xi,0)(xj − xj,0)− r2δij
4πρr5

∫ r/cs

r/cp

sFj(t0 − s) ds,

(21)

Fj(t) = cos (kt) exp(−2kt2), δij is the Kronecker delta, t0 = 2
√

1/k and wavenumber is

set to k = 32, this is approximately 5.09 Hz. The stations lie in a plane and are located

just below the surface at S1 : (1.1, 0.5, 0.1) km, S2 : (1.4, 0.5, .1) km, S3 : (1.8, 0.5, 0.1)

km. The interface is a plane, z = z0 that varies from depth 1km to 2km. Above the

interface cp varies from 0.75 km/s to 1.10 km/s, below the interface cp varies from 1.12

km/s to 1.48 km/s and we fix cs = cp/1.7 (corresponding the case λ = µ roughly).

There are a total of 6,400 data points in the P,S-wave dataset. Each data point is a

(2048,3,3) tensor. Prior to training each example is down-sampled along the temporal

axis by a factor of 8. To help convergence, the number of feature channels of the neural

networks for the P,S-Wave dataset were increased by a factor of 4 as compared to the

networks trained on the P-Wave dataset. Each network used a mini-batch training size
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of 256. Similarly to the P-wave dataset, 100 additional samples were generated using

SPECFEM3D.

In general the UNet architecture had higher evaluation accuracy compared to the

segmentation networks. The most successful model was GeoDUDe-2, with 98.26 %

evaluation accuracy on FGA data, and 97.55 % evaluation data on the SPECFEM data.

Due to the significant increase in the number of parameters in the networks using

PS-wave data, we find that the evaluation accuracy goes down for deeper networks. In

particular, GeoDUDe-3 performed significantly worse with only a 92.34 % evaluation

accuracy, especially compared to the same network architecture on the P-wave dataset.

This is likely due to overfitting of the data causing an increase in generalization error.

Similarly to the P-wave dataset, evaluation accuracies on SPECFEM3D data are

only marginally worse than their FGA counterparts, with a max difference of 1.76%

between the datasets.

(a) Computational Domain (b) Seismogram

Figure 7. P,S-wave setup. Wavenumber k=32. (a) The is source located at (.5,.5,.5)

as a star and the 3 receivers located on the surface, the interface presented is at a

depth of 2km. (b) A typical data point, a collection of 3 seismograms from the forward

simulation using the FGA.

Table 2. P,S-Data Network Comparisons.

Network Eval. Acc. Eval. Loss Train. Acc. Train. Loss SEM Acc.

GeoDSegDe-2 97.74 % 0.1742 99.89 % 0.00375 97.44 %

GeoDSegDe-3 92.34 % 0.4290 99.95 % 0.0019789 90.58 %

GeoDUDe-2 98.26 % 0.1650 99.97 % 0.0015729 97.55 %

GeoDUDe-3 97.64 % 0.1975 99.90 % 0.0026064 96.47 %
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(a) Evaluation Accuracy (b) Training Accuracy

Figure 8. PS-wave training results. Wavenumber k=32: The evaluation dataset for

this figure only contains data generated by the FGA. Accuracy is computed as the total

number correct classifications.

(a) FGA: Actual (b) FGA: Predicted (c) FGA: Difference

(d) SEM: Actual (e) SEM: Predicted (f) SEM: Difference

Figure 9. GeoDUDe-2: P,S-wave predictability. Each column of pixels represents

a sample. The value of each pixel describes whether the material at the depth

corresponding to that pixel’s column belongs to either the high or low wavespeed region.
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(a) GeoDUDe-2:FGA (b) GeoDUDe-2:SEM

Figure 10. GeoDUDe-2: P,S-wave heat-map distribution comparison. Regions of low

confidence correspond to areas where an interface is likely.

5. Conclusions and future work

The use of the FGA to generate large amounts of seismic data provides a quick way

to generate labeled synthetic data for statistical learning of the inverse tomography

problem. Casting the inverse problem as a segmentation problem resulted in high

evaluation accuracy networks for piecewise constant two-layer models on both FGA and

SEM datasets. The Encode/Decode fully convolutional and UNet architectures with

Dense blocks displayed superior accuracy compared to simpler network architectures.

However, deeper networks did not necessarily outperform their shorter counterparts.

Yet, all models exhibited good invariance of prediction in regard to which numerical

method was used to generate the dataset, as the FGA and SEM exhibit the same

traveltime information. Having a network independent of numerical method is

important, and the FGA can help to train such a network as it generates synthetic

seismic data that carries the correct traveltime information of the real-world data.

The success of the networks on this piecewise constant simple interface act as a

stepping stone to tackle more complicated and realistic geological models. By developing

the API GeoSeg, available at https://github.com/KyleMylonakis/GeoSeg, it is easy

to implement neural networks designed for more general segmentation problems of

seismogram data than those discussed in this paper. Immediate future directions to

be explored are multi-layer models, piecewise linear models, and non-linear interface

models. A long term goal is to develop a neural network trained on synthetic seismic

data capable of making inferences from real seismic data.

https://github.com/KyleMylonakis/GeoSeg
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