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Abstract A Centroidal Voronoi tessellation (CVT) is a Voronoi tessellation in which the gen-
erators are the centroids for each Voronoi region. CVTs have many applications to computer
graphics, image processing, data compression, mesh generation, and optimal quantization.
Lloyd’s method, the most widely method used to generate CVTs, converges very slowly for
larger scale problems. Recently quasi-Newton methods using the Hessian of the associated
energy as a preconditioner are developed to speed up the rate of convergence. In this work a
graph Laplacian preconditioner and a two-grid method are used to speed up quasi-Newton
schemes. The proposed graph Laplacian is always symmetric, positive definite and easy to
assemble, while the Hessian, in general, may not be positive definite nor easy to assemble.
The two-grid method, in which an optimization method using a relaxed stopping criteria is
applied on a coarse grid, and then the coarse grid is refined to generate a better initial guess
in the fine grid, will further speed up the convergence and lower the energy. Numerical tests
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show that our preconditioned two-grid optimization methods converges fast and has nearly
linear complexity.

Keywords Centroidal Voronoi tessellation · Lloyd’s method · Numerical optimization ·
Quasi-Newton methods

Mathematics Subject Classification 62H30 · 65H10 · 65K10 · 65U05 · 68U10

1 Introduction

Let Ω ⊂ R
n be an open domain and z = {zi }N

i=1 ⊂ Ω be a specified set of points. A Voronoi
Tessellation V = {Vi }N

i=1 is a special type of partition of Ω such that each region Vi , the
so-called Voronoi region, is defined by

Vi = {x ∈ Ω : |x − zi | < |x − z j | for j �= i}. (1)

The points z are called generators. A Centroidal Voronoi Tessellation (CVT) is a Voronoi
tessellation where each generator zi coincides with the centroid of each Voronoi region Vi .
CVTs have many applications to computer graphics, image processing, data compression,
mesh generation, and optimal quantization; see [9,12] for specific details.

We consider fast methods for computing stable CVTs. A CVT can be also defined through
the energy associated to a set of generators z and the corresponding Voronoi tessellation V

E(z, V(z)) =
N∑

i=1

Ei (z, V(z)) =
N∑

i=1

∫

Vi

ρ(x)‖x − zi‖2 dx, (2)

where ρ is a probability density function. It can be easily shown that a CVT is a critical
point of E and a stable CVT is defined as a local minimal point of E . In other words, we are
interested in fast methods on finding a local minimizer of the energy E(z, V(z)).

Du and Emelianenko [6] developed a quasi-Newton method mixed with Lloyd iterations
for solving the gradient equation ∇E = 0. This approach works well on finding a CVT
provided a sufficient number of Lloyd iterations are applied [27]. Du and Emelianenko [7]
also describe a Newton-based multilevel algorithm and later on Emelianenko [13] developed
a multigrid method by using ideas from algebraic multigrid methods. These methods are
effective as a root finding method for solving the gradient equation ∇E = 0, but may suffer
on not leading to a stable CVT; see numerical examples in [27].

One promising method to find a stable CVT is developed by Liu, Wang, Lévy et al. [27],
where preconditioned quasi-Newton methods are applied to minimize the energy E . The
preconditioner used in [27] is an incomplete Chloesky factorization of a modification of the
Hessian matrix of the energy E . However, there is no guarantee the modified Hessian will
be an effective preconditioner, especially when large and/or numerous shifts are needed; see
[1,25].

The main contribution of this paper is to propose a graph Laplacian as a preconditioner. The
graph Laplacian we propose is easy to assemble and always symmetric and positive definite
(SPD). Therefore the incomplete Cholesky factorization algorithm can be applied directly.
Numerical tests show that classical quasi-Newton methods and nonlinear conjugate gradient
methods coupled with our preconditioner converges with a rate almost independent of the
problem size and thus has nearly linear complexity. Note that finding a good preconditioner
for a specific problem is a central question in the scientific computing [36].
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Another contribution is the combination of the two-grid method [35] with our precon-
ditioned optimization methods. Running our preconditioned optimization methods on the
coarse grid and prolongate to a fine grid, the energy is much lower than random generators
or running Lloyd’s method for an equivalent time on the fine grid. This makes for a good
initial guess on the fine grid, which allows for faster convergence and often leads to a lower
energy. Since the run-time on the coarse grid is significantly less than that in the fine grid, it
further speeds up our preconditioned optimization methods.

The paper is organized as follows. In Sect. 2, we review the problem, previous works
and well known optimization methods. In Sect. 3, we derive our graph Laplacian. In Sect. 4,
we show one-dimensional examples using a quasi-Newton scheme. In Sect. 5, we provide
several numerical examples with both preconditioned and non-preconditioned optimization
methods. In Sect. 6, we show numerical results applying a two-grid with both preconditioned
and non-preconditioned optimization methods. Lastly in Sect. 7, we summarize the results
with concluding remarks.

2 Preliminaries

In this section we present the background of the problem and briefly review well known
optimization methods. Recall that our object of interest is the energy functional (2). Taking
derivative to z and noting that the part ∂E

∂V (z, V) = 0 due to the definition of the Voronoi
region, we can get:

Fi (z) := ∂

∂zi
E(z, V(z)) = 2

∫

Vi

ρ(x)(zi − x) dx . (3)

Solving Fi (z) = 0, we get

zi =
(∫

Vi

ρ(x) dx

)−1 ∫

Vi

xρ(x) dx . (4)

Namely zi is the centroid of the Voronoi region Vi with respect to the density ρ. Therefore
a CVT is a critical point of E(z). A stable CVT will be defined as a local minimizer of the
energy E(z, V), while an unstable CVT corresponds to a saddle point.

Before moving to various optimization methods, we mention that there are plenty of
resources for forming Voronoi tessellations for a given set of generators. Computational
Geometry Algorithms Library (CGAL) [15] is one such. Another is Matlab with the com-
mand voronoin. We choose to implement our code on the latter. To construct a Voronoi
tessellation on a bounded convex domain, we reflect all the nodes, which are close enough to
the boundary, over the boundary. From this expanded set of nodes we form the dual graph,
known as the Delaunay triangulation. Once this triangulation is made we connect the cir-
cumcenters of neighboring triangles, then truncate back to the original domain which results
the Voronoi tessellation of a bounded domain. The complexity of generating the Voronoi
tessellation of N generators is O(N log N ) in 2-D and 3-D; see [38].

For every generator zi and its Voronoi region Vi , we triangulate Vi by connecting zi and
the vertices of Vi , see Fig. 1b. Then we can use Gaussian quadrature on triangles to compute
integrals in E and ∇E . We also note that the energy is in the order of N−2/d [19,20] for optimal
CVTs in R

d . A fair stopping tolerance for different N would be size-independent. Therefore
we introduce D := diag(mi ), where mi = ∫

Vi
ρ(x) dx , the diagonal matrix formed by the
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Fig. 1 Decomposition of a Voronoi region into triangles. a Voronoi regions on a square with 12 generators.
b A triangulation of the Voronoi region

mass of every Voronoi region, and the scaled l2 norm ‖D−1F‖. Here for the sake of notation
we define F(z) := ∇E(z, V(z)).

2.1 Lloyd’s Method

The most popular method for computing a CVT is Lloyd’s method [29], which treat the
regions and generators as independent and update them alternatively. Namely fix z and
optimize the partition which is the voronoi tessellation V(z), and then fix V and move z to
the centers.

Let us introduce the so-called Lloyd map T = (T1, T2, . . . , TN ) [7]. Given z = {zi }N
i=1

and corresponding Voronoi regions V = {Vi }N
i=1, Ti is defined by

Ti (zi ) =
(∫

Vi

ρ(x) dx

)−1 ∫

Vi

ρ(x)x dx, (5)

for i = 1, 2, . . . , N . For a CVT, the generator z is a fixed point of the Lloyd map and the
Lloyd iteration is a fixed point iteration using the Lloyd map.

Given an initial set of generators z0, one Lloyd iteration is as follows:
Lloyd Iteration

1. Construct Vk(zk).
2. Update zk+1 = T(zk).

Lloyd’s method is easy to implement and has a convergence rate of 1 − O(h2), where
h = mini diam(Vi ) [8,14]. Thus the larger the size of the problem is, the slower the rate
of convergence is. In each iteration of Lloyd’s method the construction of V dominates the
computation time.

2.2 Quasi-Newton Methods

Recently Liu et al. [27] has shown that the energy E has second order smoothness for convex
domains, because of this quasi-Newton methods seem reasonable. It should be noted that
second order smoothness, regardless of the domain, is only possible away from degenera-
cies [37].

Given B an approximation of the Hessian of E , a quasi-Newton iteration is as follows:
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quasi-Newton Iteration

1. Solve Bδz = −F(zk).
2. Update zk+1 = zk + αkδz.

Here αk is given by the line search which satisfies the strong Wolfe conditions [31]. If
B = H(zk), the Hessian of the energy at zk , and αk = 1, then it returns to the classic Newton’s
method. When the Hessian is indefinite, which creates a problem in Newton’s method, one
remedy is to modify H by diagonal shifting, then an incomplete Cholesky factorization is
applied for the modified Hessian; see Algorithm 3.1 in [25].

2.3 Quasi-Newton Method: PLBFGS

In quasi-Newton methods, the Hessian is approximated by successive gradient vectors. One
of the most popular quasi-Newton schemes is BFGS method (Broyden–Fletcher–Goldfarb–
Shanno) [31]. We only describe one iteration of the preconditioned limited memory version
of the BFGS (PLBFGS), and refer to [26,31] for more details.

After initializing r = −F(z0) and two integer parameters M and T , each iteration of the
PLBFGS algorithm is as follows:

PLBFGS(M,T) iteration

1. First LBFGS update:
for i = min(M − 1, k − 1) : −1 : 1

Calculate γi = ρi st
i r

Update residual r = r − γi yi

end
2. Set search direction:

if k mod T = 0 solve Akdk = r
else dk = Hkr
end

3. Second LBFGS update:
for i = 1 : +1 : min(M − 1, k − 1)

Update search direction dk = dk + si (γi − ρi yt
i dk)

end
4. Update zk+1 = zk + αkdk

The matrix Ak is a chosen preconditioner, αk is given by the line search satisfying the
weak Wolfe conditions [31] with an initial guess αk = 1, and

sk = zk+1 − zk, yk = Fk+1 − Fk, ρk = (
y′

ksk
)−1

, Hk = s′
k−1 yk−1

y′
k−1 yk−1

.

2.4 Preconditioned Nonlinear Conjugate Gradient (PNLCG)

The nonlinear conjugate gradient method (NLCG) is a generalization of the conjugate gra-
dient method for solving linear algebraic equation to nonlinear optimization problems. We
outline the basic iteration step and refer to [21,31] for details.

Let A0 be a symmetric positive definite (SPD) matrix. Given an initial guess z0 and
p0 = −A−1

0 F(z0), one iteration of the PNLCG scheme from zk−1 to zk , for k = 1, 2, . . . ,

is as follows:
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PNLCG Iteration

1. Update zk = zk−1 + αk−1 pk−1.
2. Solve Akxk = −F(zk).
3. Calculate βk .
4. Update conjugate direction pk = xk + βk pk−1.

There are several formulae for updating βk ; see [21]. Three well-known βk are: Polak-
Ribière (β P R

k ) [32], Hestenes–Stiefel (βH S
k ) [22], Fletcher–Reeves (βF R

k ) [17]. In our exper-
iments, β P R

k shows to be a good choice for this problem. The matrix Ak is often chosen as
an SPD and known as a preconditioner. A good preconditioner will speed up convergence
dramatically.

There are many ways to solve the equation Akxk = −F(zk). We report results using an
incomplete Cholesky factorization (ICF); see Algorithm 3.1 in [25]. We note that algebraic
multigrid (AMG) methods [2,28,33] with the optimal complexity O(N ) will be ideal for
large scale problems in 3-D. We have tested AMG in [3], but due to the implementation
using Matlab it is slightly slower than the built-in ICF in Matlab.

The scalar αk is obtained by line search such that the strong Wolfe conditions is sat-
isfied [31]. In each line search step, the evaluation of energy and its gradient request the
computation of Voronoi diagram which is relatively expensive. A good initial guess can dra-
matically decrease the number of searching steps, the number of iterations of NLCG, and
thus save the overall computational time. For CVT optimization, our tests show that, in most
cases, choosing α0

k := F(zk)
′ A−1

k F(zk)/|p′
kH(zk)pk |, the strong Wolfe condition will be

satisfied. Where H(zk) is the Hessian at zk .
It is good to note that LBFGS iterations with M = 1 coincides NLCG iterations with

βH R . NLCG is thus more memory efficient than LBFGS (with M > 1).

3 A Graph Laplacian

In this section we derive a graph Laplacian that carries some information about the Hessian,
but is inexpensive to construct and invert. This work is motivated by the recent work with
Optimal Delaunay Triangulations; see [4,5].

Recall that if a smooth function u : R
n → R satisfies the mean value property u(x) =

1
|B(x,r)|

∫
B(x,r)

u(y) dy for all ball B(x, r) centered at x with radius r > 0, then u is harmonic,
i.e., 	u = 0. The discretization of 	u will lead to Au with a discrete Laplacian matrix. One
can change the Lebesgure measure to a more general one ρ(x)dx and the metric in defining
the ball in the mean value property. The corresponding A will be a different weighted discrete
Laplacian matrix.

For a CVT, the generator z is a fixed point of the Lloyd map (5), i.e. zi = 1
|Vi |ρ

∫
Vi

ρ(y)y dy
which can be interpreted as a discrete mean value property for function u(x) = x . Thus we
would expect A(z)z = 0 with a discrete Laplacian matrix A. In other words, we are interested
in finding such a matrix equation to approximate the non-linear equation F(z) = 0.

Before we get into details, we remark that the matrix of an effective preconditioner is not
necessarily a good approximation to the Hessian matrix. A SPD preconditioner can be thought
as a change of coordinate such that the descent method (gradient or conjugate–gradient
method) in the new coordinate is effective. The search direction will be corrected by the
quasi-Newton or conjugate gradient method. When searching for an effective preconditioner,
a rough approximation, e.g., first order approximation of F(z) is often times acceptable. We
now derive such an approximation.
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Fig. 2 Decomposition of a Voronoi region for the construction of a graph Laplacian

For a polygon domain Ω ∈ R
2 and a set of generators, it is known that every Voronoi

region is a polygon. Given a generator zi and its Voronoi region Vi , if ei j is a common edge
shared by Vi and another Voronoi region Vj , connecting zi and z j to the two end points of
ei j , respectively, we can get two triangles τi j and τ j i ; see Fig. 2. If ek is edge of Vi and
ek ⊂ Γ := ∂Ω , we get only one triangle τk .

Let Ji be the index set of the generators whose Voronoi regions are adjacent to Vi and τi j

be the triangle formed from the generator zi and the edge V i ∩V j ; see Fig. 2. Then F(z) = 0
can be written as

zi

∫

Vi

ρ(x) dx −
∑

j∈Ji

∫

τi j

ρ(x)x dx = 0 (6)

We approximate the left hand side of Eq. (6) by a linear average of its respective neighbors
using a first order approximation of the integrals. We first approximate ρ by a constant ρc

and integrals by one point quadrature
∫

τi j

ρ(x)x dx ≈ ρc
zi + z j

2
|τi j |.

Here the point (zi + z j )/2 ∈ ei j ⊂ τi j since ei j is the bisector of edge zi z j by the definition
of Voronoi region. Note that this approximation is still valid in three and higher dimension.
If we further approximate the weighted area ρc|τi j | by the integral bi j = ∫

τi j
ρ(x) dx , which

is still first order accurate, then we obtain an approximated first order equation
∑

j∈Ji

bi j (zi − z j ) = 0. (7)

However the matrix B formed by bi j is non-symmetric, i.e., bi j �= b ji ; see Fig. 2. A symmetry
version will be

aii zi +
∑

j∈Ji

ai j z j = 0,

where the weight is constructed as follows:

A =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ai j = − ∫
τi j ∪τ j i

ρ(x) dx i �= j

aii =
∑

ei j =V i ∩V j
|ai j | + 2

∑
ek=Γ ∩V i

∫

τk

ρ(x) dx

0 otherwise.

(8)
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For the off diagonals ai j is the opposite of the mass of τi j and τ j i . The diagonal entries aii

are the sum of absolute values of the off diagonal entries in the i th row. For the generators
contain the edges ek ⊂ Γ , for each triangle τk , the factor of 2 comes about by a reflection
to preserve the boundary of the domain, see z

′
i and τ

′
i j in Fig. 2. Note that the factor 2 can

be multiplied to (6) so that
∫
τi j ∪τ j i

can be thought as an approximation of 2
∫
τi j

. In short

A = B + Bt . Such change enables the matrix A is symmetric.
It is easy to observe that, by construction, A is symmetric and diagonal dominant and

thus a SPD. The incomplete Cholesky factorization algorithm can be applied directly without
diagonal shifting [25]. Other fast solvers, for example, algebraic multigrid methods [2,28,33]
with the optimal complexity O(N ) can be also used to invert the graph Laplacian. More
specifically, the Lean Algebraic Multigrid (LAMG) Fast Graph Laplacian Linear Solver
[28] supports symmetric diagonally dominant matrices with non-zero-row sums. Our graph
Laplacian is an ideal example of such a matrix. We have tested our 2-D problems using both
AMG and ICF but only report results using the ICF. Due to the implementation we use in
Matlab AMG performs slightly slower than the built-in function ichol. We expect in 3-D,
using a similar construction of our graph Laplacian on tetrahedrons, AMG will be faster than
an ICF.

Our graph Laplacian is easier to construct. The quantity
∫
τi j

ρ(x) dx has been computed
during the evaluation of E and ∇E . In contrast the Hessian matrix of the energy functional E is
complicated and relatively expensive to compute. For completeness we include the formulate
of the Hessian below

D2E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2 E

∂z(k)
i ∂z(k)

i

= 2mi −
∑

j∈Ji

2

‖zi − z j ‖
∫

ei j

(z(k)
i − x(k))2ρ(x)dσ

∂2 E

∂z(k)
i ∂z(l)

i

= −
∑

j∈Ji

2

‖zi − z j ‖
∫

ei j

(z(k)
i − x(k))(z(l)

i − x(l))ρ(x)dσ k �= l

∂2 E

∂z(k)
i ∂z(l)

j

= 2
‖zi −z j ‖

∫
ei j

(z(k)
i − x(k))(z(l)

j − x(l))ρ(x)dσ j ∈ Ji

∂2 E

∂z(k)
i ∂z(l)

j

= 0 otherwise

Note that our graph Laplacian will be applied to each coordinate component of the genera-
tor which can be interpreted as using the same coordinate transformation for each coordinate
component.

4 Numerical Results: One Dimension

We start by looking at results from quasi-Newton iterations for one dimensional CVTs. We
test two non-trivial density functions and compare the results to the Full Approximation
Scheme (FAS) method described in Koren, Yaveneh and Spira [24].

4.1 Description of Methods

Given an interval Ω = (a, b) and generators z, the Voronoi regions are simplified to Vi =
(di−1, di ) =

(
zi−1+zi

2 ,
zi +zi+1

2

)
. The Hessian is a tridiagonal matrix whose components are

given by
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∂2E
∂zi∂zi−1

= −1

2
ρ(di−1) (zi − zi−1) ,

∂2E
∂zi∂zi+1

= −1

2
ρ(di ) (zi+1 − zi ) ,

∂2E
∂z2

i

= 2
∫ di

di−1

ρ(x) dx − 1

2
ρ(di )(zi+1 − zi ) − 1

2
ρ(di−1)(zi − zi−1). (9)

Because of the simplicity of the problem in one dimension, we only show quasi-Newton
iterations using our graph Laplacian. In one dimension our graph Laplacian is a modified
Hessian by replacing the diagonal of Hessian matrix by the sum of the absolute values of
off-diagonals, with suitable modification near the boundary generators; that is,

A = diag

(
∂2E

∂zi∂zi−1
,

∣∣∣∣
∂2E

∂zi∂zi−1

∣∣∣∣ +
∣∣∣∣

∂2E
∂zi∂zi+1

∣∣∣∣ ,
∂2E

∂zi∂zi+1

)
. (10)

We also implement a two-grid method. Starting on a coarse grid, we run an optimization
method using a relaxed stopping criteria and then refine the coarse grid by consecutive
midpoints to the fine grid.

Two-grid and quasi-Newton Method for 1-D CVT

1. Initialize z0 on the coarse grid.
2. Run Lloyd’s method until relaxed stopping criteria is met.
3. Refine to fine grid by successive uniform refinements.
4. Preform quasi-Newton iterations using the graph Laplacian until stopping
criteria is met.

For the coming numerical examples, we fix the coarse grid at 32 uniformly distributed
generators. We preform Lloyd’s method until ‖D−1F(z)‖ < 1.e−4. We refine the coarse
grid by consecutive midpoints upto the desired fine grid. We use a simple backtracking line
search to ensure that generators do not move outside the domain. For both tests we use a fifth
order Gaussian quadrature for numerical integration.

The number of generators in the finest grid is 2L , where L ranges from 7 to 16. The
stopping criteria is set to ‖D−1F(z)‖ < 1.e−6. The level L, iteration steps Iter, energy E ,
and l2-norm ‖D−1F(zk)‖ are summarized in tables. The decay of the weighted gradient and
the l2-norm of the residual ‖δz‖, the solution of Aδz = −F(zk), are shown in figures. For
these tests we also calculate the average residual reduction factor (R RF), which is given by
‖δzk+1‖\‖δzk‖, and compare with [24].

Table 1 Data table for example 1, density ρ(x) = e−10x2
on (−1, 1)

L Iter E ‖D−1F‖ L Iter E ‖D−1F‖
7 10 1.3264e−04 1.3307e−07 12 14 1.3348e−07 7.7409e−09

8 10 3.3677e−05 2.2935e−07 13 15 3.3387e−08 3.8520e−09

9 11 8.4849e−06 7.3432e−08 14 15 8.3489e−09 6.6885e−07

10 12 2.1295e−06 3.2315e−08 15 16 2.0875e−09 3.3436e−07

11 13 5.3341e−07 1.5651e−08 16 17 5.2190e−10 1.6716e−07
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Fig. 3 Error and residual figures for example 1, density ρ(x) = e−10x2
on (−1, 1). a Iteration versus log of

the l2-norm of weighted error. b Iterations versus log of l2-norm of residual

4.2 Example 1

First we test the Gaussian distribution ρ(x) = e−10x2
on the domain Ω = (−1, 1). As

the level increases, there is a slight increase in the number of iterations. This can be seen
from Table 1. For the first several iterations, the quasi-Newton method using our graph
Laplacian shows linear convergence. Afterwards superlinear convergence is obtained, which
is an evidence that our graph Laplacian becomes a better and better approximation of the
Hessian; see Fig. 3a. The average R RF is 0.3927.

The coarse grid is fixed at 32 generators. As the fine grid gets finer and finer,
the initial guess obtained by interpolation from the fixed coarse grid is less accurate.
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Table 2 Data table for example 2, density ρ(z) = 6x2e−2x3
on (0, 2)

L Iter E ‖D−1F‖ L Iter E ‖D−1F‖
7 12 1.0288e−05 4.9381e−08 12 16 1.0124e−08 4.5549e−08

8 12 2.5822e−06 7.5461e−07 13 17 2.5312e−09 2.2802e−08

9 13 6.4680e−07 3.7076e−07 14 17 6.3284e−10 7.1679e−07

10 14 1.6186e−07 1.8329e−07 15 18 1.5821e−10 3.5830e−07

11 15 4.0484e−08 9.1485e−08 16 19 3.9554e−11 1.7918e−07

Therefore on average it takes one more iteration to enter the superlinear convergence
region and consequently one more iterations to reach the stopping criteria. One could
improve the performance (e.g. the iteration steps are uniform to the levels) by using
three-grids or multi-grids version. But for the one dimensional problem, the triangular
graph Laplacian matrix can be efficiently inverted and the construction of Voronoi tessel-
lation is trivial, the saving is not significant. For simplicity, we only present the two-grid
version.

4.3 Example 2

For the second example we test the Weibull distribution ρ(x) = 6x2e−2x3
on Ω = (0, 2).

There is a slight oscillation during the first few iterations in the residual, this raises the average
R RF to 0.5248. The oscillation in the residual decreases when superlinear convergnce is
obtained. Again on average it takes approximately one more iteration per level to see this
behavior on the residual (Table 2).

The weighted error shows linear convergence and then superlinear convergence; see
Fig. 4a. The results are consistent with example 1. Typically as the levels increase it takes,
on average, one more iteration for our method to obtain superlinear convergence.

The two numerical examples show that the two-grid method is effective and the over-
all effectiveness of the quasi-Newton scheme with the proposed graph Laplacian. The
order at which the error converges superlinearly, for both examples for the convergence,
is approximately 1.8. This is not quite the quadratic convergence of Newton’s method;
however, this is expected since we are not using the Hessian but our graph Laplacian.
We note that in [24], the RRF of FAS is 0.17–0.20, while the RRF of our method is
between 0.39 and 0.52. However, the FAS presented in [24] for one dimension prob-
lem, the authors believe, as well as we do, is difficult to be extend to higher dimen-
sions [23]. In contrast, our methodology works well in two dimensions and possible higher
dimensions.

5 Numerical Results: Two Dimensions

In this section we present numerical results for generating two dimensional CVT using
NLCG and BFGS with our graph Laplacian preconditioner. We compare the results of the
preconditioned optimization methods versus their non-preconditioned counter parts and ver-
sus Lloyd’s method.

We use the l2-norm of the scaled gradient ‖D−1F‖ to measure the convergence and set
our stopping criteria at ‖D−1F‖ <1.e−6. In practice, if the energy is the main concern,
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Fig. 4 Figure for error and residual for example 2, density ρ(z) = 6x2e−2x3
on (0, 2). a Iteration versus log

l2-norm of the weighted error. b Iterations versus log of l2-norm of residual

one can set the iteration criteria to an insufficient decrease in the energy, i.e. |Ek − Ek−1| <

tolerance. We shall comment on the steps for energy to level off.
For various methods, we compare the iteration steps and CPU time to reach the stopping

criteria. For Lloyd’s method, we only count the first 1,000 iterations since it takes too many
to reach the same stopping criteria. Since the generation of Voronoi diagram takes significant
time, we use nFeval to count the number of evaluations of the energy function in which a
new Voronoi diagram is generated.

For each test we start with 2,000 random distributed generators based on the given proba-
bility density function. Results will be different for different initial guesses. We thus test the
sensitivity of each method with respect to the initial guess by running twenty simulations and
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Fig. 5 Voronoi tessellations for example 3. a An initial Voronoi tessellation with random generators, b CVT
obtained from a PLBFGS(7) using a, c CVT obtained from 1,000 iterations of Lloyd’s method using a, d
an initial Voronoi tessellation with random generators, e CVT obtained from a PLBFGS(7) using d, f CVT
obtained from 1,000 iterations of Lloyd’s method using d

recording the performance of each simulation, see Figs. 6, 9 and 13. For each optimization
method from these 20 simulations we compare the averages of results.

To test the complexity, we change N , the number of generators, from 2,000 to 8,000 with
an increment of 1,000 and plot the computational time versus N . For each fixed number of
generators and optimization method, we run each test twenty times and use the averaged
results.

For a CVT, most Voronoi regions seem to form hexagons [16,18]. For the figures of
Voronoi tessellations we color the Voronoi regions to illustrate this, see Figs. 5, 8 and 12. The
white Voronoi regions are hexagons while the shaded Voronoi regions are other polygons.

Each Voronoi region Vi is triangulated by connecting its generator zi and the vertices of
Vi . Gaussian quadrature on triangles is applied to compute E and ∇E .

In our tests, we use the optimization packages HANSO and NLCG developed by Overton
(http://www.cs.nyu.edu/overton/software/) and the finite element method package iFEM [3]
by Chen (http://www.math.uci.edu/~chenlong/programming.html). Note that we write our
code in MATLAB, while Liu et al. [27] use C++. Thus a direct comparison of computational
time of our methods versus theirs is not feasible. Instead we use the Lloyd’s method with
fixed 1,000 iterations as the base to compare.

We run all simulations on a Laptop running Ubuntu 11.10. The CPU is an Intel i5-2410M
Processor with 3M Cache at 2.30 GHz and 4 GB of DDR SDRAM at 1,333 MHz.
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Fig. 6 20 simulations with density function ρ(x, y) = 1 on a regular octagon bounded by [−2, 2] × [−2, 2].
a Run versus nFeval, b run versus time

5.1 Example 3

We first test a constant density function, ρ(x, y) = 1, and chose Ω as a regular octagon
bounded by [−2, 2] × [−2, 2] see Fig. 5. For numerical integration we use a second order
Gaussian quadrature.

The initial guess affects the performance of all methods tested; see Fig. 6. Over all both
the PLBFGS(7) and PNLCG are more stable compared to LBFGS(7) and NLCG. This is the
reason for taking averaged results for all tests.
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Table 3 Data table for example 3, density function ρ(x, y) = 1 on a regular octagon bounded by [−2, 2] ×
[−2, 2]
Method Iter nFeval Time (s) E ‖D−1F‖ ‖F‖
Lloyd 1,000 1,000 33.61 1.0378e−2 1.6852e−3 9.4723e−6

LBFGS(7) 373.60 395.45 13.88 1.0362e−2 9.1543e−7 6.8850e−8

PLBFGS(7) 286.75 315.10 15.17 1.0366e−2 9.2603e−7 6.9348e−8

NLCG 363.10 374.70 24.06 1.0365e−2 9.6693e−7 7.2866e−8

PNLCG 219.85 240.70 18.65 1.0366e−2 9.2846e−7 6.9517e−8

Results are comprised of the average from 20 runs

Fig. 7 Energy and error plots for example 3. a Lloyd, LBFGS(7) and PLBFGS(7) comparison of iteration
versus energy, b iteration versus log of l2-norm weighted error, c Lloyd, NLCG and PNLCG comparison of
iteration versus energy, d iteration versus log of l2-norm weighted error

From Table 3, we can see both PLBFGS(7) and PNLCG meet the stopping criteria in
fewer iterations than their respective counterparts. Since each iteration of preconditioned
methods involves an incomplete Chloesky factorization and the drop of iteration steps is not
significant, the average total time of twenty runs of PLBFGS(7) is slightly bigger than that
of LBFGS(7). For NLCG, we use Hessian to construct the initial guess of line search and
thus they are in general more costly than LBFGS despite fewer iterations. Due to the drop of
iteration steps, PNLCG is faster than NLCG.

We use a typical run from each optimization method to illustrate the behavior of the energy
and error, see Fig. 7. Comparing with Lloyd’s method, the energy using BFGS or NLCG
drops rapidly, then starts to level off after 10 iterations.
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Fig. 8 Voronoi tessellations for example 4. a An initial Voronoi tessellation with 2,000 random generators,
b CVT obtained from a PLBFGS(7) using a, c CVT obtained from 1,000 iterations of Lloyd’s method using
a, d An initial Voronoi tessellation with 2,000 random generators, e CVT obtained from a PLBFGS(7) using
d, f CVT obtained from 1,000 iterations of Lloyd’s method using d

Table 4 Data table for example 4, density function ρ(x, y) = e−20(x2+y2) + 1
20 sin2(πx) sin2(πy) on a

regular hexagon bounded by [−2, 2] × [−1.732, 1.732]
Method Iter nFeval Time (s) E ‖D−1F‖ ‖F‖
Lloyd 1,000 1,000 50.16 1.7066e−4 3.3112e−3 3.3607e−7

LBFGS(7) 530.80 554.15 28.76 1.7024e−4 9.4883e−7 9.1685e−9

PLBFGS(7) 230.90 252.95 16.37 1.6423e−4 8.9680e−7 1.1374e−8

NLCG 442.25 443.85 39.71 1.7027e−4 9.8116e−7 1.1039e−8

PNLCG 170.90 176.60 18.07 1.6939e−4 9.2365e−7 1.1190e−8

Results are comprised of the average from 20 runs

For constant density, the preconditioned scheme does not seem as much of as improvement.
Furthermore, the case with constant density is not challenging as one can start with a regular
tessellation using hexagons which is nearly optimal.

5.2 Example 4

For the second 2-D test we take the example 4 in [27]. We use the density ρ(x, y) =
e−20(x2+y2) + 1

20 sin2(πx) sin2(πy) and chose Ω as a regular hexagon bounded by
[−2, 2]×[−1.732, 1.732], see Fig. 8. For numerical integration we use a sixth order Gaussian
quadrature which results the time increase of Lloyd method (from 33.61 s in Table 3 to 50.16 s
in Table 4).
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Fig. 9 20 simulations with density function ρ(x, y) = e−20(x2+y2) + 1
20 sin2(πx) sin2(πy) on a regular

hexagon bounded by [−2, 2] × [−1.732, 1.732]. a Run versus nFeval, b run versus time

In comparing multiple runs, we have both the PLBFGS(7) and PNLCG show more stable
than their respective counterparts; see Fig. 9.

For both the LBFGS and NLCG the preconditioned scheme are faster; see Table 4. The
reason of the improvement is due to the non-trivial density. In this case, the inverse of graph
Laplacian can adjust the density of the generators more efficiently. For the behavior of the
energy and error for a typical run see Fig. 10.

To test robustness with respect to the size of generators, we test 2,000 to 8,000 generators
with an increment of 1,000. For each size, we use the same stoping criteria of ‖D−1E‖ ≤
1.e−6 which is independent of the size N . With each preconditioned scheme the number of
function calls, and hence the number of iterations remains relatively constant; see Fig. 11a.
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Fig. 10 Energy and error plots for example 4. a Lloyd, LBFGS(7) and PLBFGS(7) comparison of iteration
versus energy, b iteration versus log of l2-norm weighted error, c Lloyd, NLCG and PNLCG comparision of
iteration versus energy, d iteration versus log of l2-norm weighted error

So the overall computation complexity is mainly dependent on the complexity of generating
Voronoi tessellation, which is O(N log N ). From Fig. 11b, as the number of generators
increases, the time increase is almost linear for both preconditioned schemes. This is in
contrast to the nonpreconditioned counter parts.

5.3 Example 5

For the third 2-D test we use the density ρ(x, y) = e−10|x2+y2−1| and Ω = (−1, 1)×(−1, 1),
see Fig. 12. For numerical integration we use a nineth order Gaussian quadrature.

Through multiple runs, the sensitivity to the initial guess results remain consistent with
example 4. The initial guess has less effect on both the PLBFGS(7) and PNLCG, as opposed
to LBFGS(7) and NLCG; see Fig. 13. The average time needed for the PLBFGS(7) and
PNLCG to reach the stopping criteria is roughly the same, about 23–25 s. On average, the
LBFGS(7) takes 44 s, while NLCG takes 51 s; see Table 5.

Both the PNLCG and PLBFGS(7) show a similar performance as in Example 4; see
Table 5. From Example 3, 4, and 5, we also observe that the performance of PLBFGS and
PNLCG is quite robust to different choices of density functions.

The energy for both the PLBFGS(7) and PNLCG level off at about 10 iterations, in half
of the iterations for the LBFGS(7) and NLCG schemes to level off. This is illustrated in
Fig. 14a, c.
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Fig. 11 Figure for robustness test for example 4. The number of generators increase from 2,000 to 8,000 with
increment 1,000. a Number of generators versus nFeval, b log of number of generators versus log of time

Again to display robustness we look at 2,000 to 8,000 generators. The test shows consistent
results with example 4. With each preconditioned scheme the number of function calls, and
hence the number of iterations remains relatively constant. As the number of generators
increases, the time increase is almost linear for both preconditioned schemes. While the
nonpreconditioned schemes, on average take about 50 s longer per 1,000 generator increase.
The results can be seen in Fig. 15.

The energy values between preconditioned and nonpreconditioned schemes for all tests
run are similar. Despite the preconditioned schemes being converging faster, they do not
necessarily produce a lower energy value.
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Fig. 12 Voronoi tessellations for example 5. a An initial Voronoi tessellation with 2,000 random generators,
b CVT obtained from a PLBFGS(7) using a, c CVT obtained from 1,000 iterations of Lloyd’s method using
a, d an initial Voronoi tessellation with 2,000 random generators, e CVT obtained from a PLBFGS(7) using
d, f CVT obtained from 1,000 iterations of Lloyd’s method using d

6 Numerical Results: Two-Grid Methods

To further speed up our preconditioned methods and produce a lower energy value, we
implement a two-grid method and repeat a non-constant density example in this section. The
two-grid algorithm is similar to that presented in Sect. 4 for 1-D CVT computation.

In 2-D, the tricky part is the grid refinement. After the optimization method is executed on
the coarse grid, each Voronoi region will contribute roughly the same amount to the energy
functional [9,18,24]. A good refinement should preserve this relationship between Voronoi
regions. However, since there are no generators on the boundary Γ , with standard uniform
refinement the Voronoi regions that intersect the boundary will not preserve the relationship.

A suitable fix is to slightly extend the boundary by some factor α on the coarse grid and
after refinement truncate back to the the original domain; see Fig. 16. For a regular polygon
with s sides the factor α = 1

2N r sin
(

π
s

)
can be used, where N is the number of generators on

the coarse grid, and r is the radius of the circle that circumscribes the regular polygon. We start
with a triangulation of each Voronoi regions in a slightly extended domain with the factor α.
Then we concatenate the midpoints of the edges of each Voronoi region onto the generators
and truncate back to the original domain. Refining in such approximately quadruples the
number of generators and preserves the similar energy values of each Voronoi region, see
Fig. 16. Figure 17b is an example of a fine grid right after refinement from Fig. 17a. This is
an evidence of this refinement being good as the energy decreased to slightly more than one
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Fig. 13 20 simulations with density function ρ(x, y) = e−10|x2+y2−1| and Ω = (−1, 1) × (−1, 1). a Run
versus nFeval, b run versus time

forth of the old one when number of generators quadruples, i.e. the energy decays at nearly
the optimal rate of N−1.

Starting with 2,000 generators on the coarse grid, we set the error tolerance of 1.e−4,
i.e. ‖D−1F(z)‖ < 1.e−4. We use the same optimization method for the coarse grid as we
do on the fine grid. We use Lloyd’s method as a reference, and compare Lloyd’s method,
PLBFGS(7) and PNLCG, with and without the two-grid method. Just as in Sect. 5, we average
the results from 20 runs. For each run we use the same number of generators for the single
grid and two-grid methods, i.e., if one simulation refines to 7,900 generators for the two grid
method, we run a simulation with 7,900 generators for a single grid method. This way we
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Table 5 Data table for example 5, density function ρ(x, y) = e−10|x2+y2−1| and Ω = (−1, 1) × (−1, 1)

Method Iter nFeval Time (s) E ‖D−1F‖ ‖F‖
Lloyd 1,000 1,000 69.10 7.4696e−5 9.6136e−4 1.3990e−7

LBFGS(7) 579.45 614.15 44.33 7.4559e−5 9.7465e−7 8.3022e−9

PLBFGS(7) 245.75 291.80 25.27 7.4572e−5 9.1869e−7 1.5361e−8

NLCG 504.70 508.45 51.75 7.4565e−5 9.7608e−7 1.0002e−8

PNLCG 178.35 192.90 22.71 7.4548e−5 9.1381e−7 1.6176e−8

Results are comprised of the average from 20 runs

directly compare energy values for each simulation; see Fig. 19. For Fig. 18 we use a typical
run to illustrate the energy and error decay.

We return to the same density function as in example 4 in Sect. 5: ρ(x, y) = e−20(x2+y2)+
1

20 sin2(πx) sin2(πy) on regular hexagon bounded by [−2, 2] × [−1.732, 1.732]. We have
tested other examples and the performance is similar.

Both the PLBFGS(7) and PNLCG, only take about 5 iterations using the two grid method
before the energy levels off. Using the PLBFGS(7) scheme directly starting from the fine grid
takes about 12 iterations. Using the PNLCG starting from the same number of generators
takes 15 iterations before the energy levels off; see Fig. 18a, c.

There is no advantage for using a two-grid method for Lloyd’s method. On each level the
maximum number of iterations allowed is reach before the stopping criteria is met. Looking

Fig. 14 Energy and error plots for Example 3. a Lloyd, LBFGS(7) and PLBFGS(7) comparison of iteration
versus energy. b Iteration versus log of weighted error. c Lloyd, NLCG and PNLCG comparision of iteration
versus energy. d Iteration versus log of weighted error
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Fig. 15 Figure for robustness test for example 4. The number of generators increase from 2,000 to 8,000 with
increment 1,000. a Number of generators versus nFeval. b Log of number of generators versus log of time

at Lloyd’s method, from the single grid to the two-grid method there is only a slight drop in the
energy. This is in contrast to the preconditioned schemes. The PLBFGS(7) takes, on average,
285 iterations with a single grid and 260 using a two-grid method. However for the two-grid
method, on average, 47 of these iterations are done on the coarse grid. Similarly, on average,
PNLCG using the two-grid takes 238 total iterations, 15 more iterations than the one-grid.
Yet again, on average, 69 of these iterations are done on the coarse grid. Iterations on the
coarse grid are approximately three and a half times computationally cheaper than iterations
on the fine grid. In other words, 60 iterations on the coarse grid amounts to approximately
17 iterations on the fine grid.
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Fig. 16 Refinement of Voronoi Tessellation. a Voronoi Tessellation on the coarse grid. Green nodes are the
midpoints of the interior cell edges, Γα is the extend boundary, Γ is the orignal boundary. b Coarse grid and
refined grid over-layed. c Refined grid truncated back to original domain

Fig. 17 Voronoi tessellation refinement for example 6. a Voronoi tessellation with 2,000 generators after
smoothing criteria of ‖D−1F‖ < 1.e−4 has been met, E = 1.5284e−4, b refined Voronoi tessellation from
2,000 to 7,902 generators without smoothing on fine grid, E = 4.5757e−5, c Voronoi tessellation with 7,902
random generators, E = 9.9048e−5

For the test we display, using the two-grid method with both the PLBFGS(7) and PNLCG,
we have about a 24 % decrease in time versus the same stopping criteria without using the
two-grid method. The results can be see in Table 6. These simulations show that not only
does a two-grid method speed up convergence, on average, it also helps in finding a lower
energy; see Fig. 19.

Although we only show results for a two-grid method, grid cascading, with a suitable
refining method, will further improve the performance for applications needing very fine
meshes.

7 Summary and Further Works

We have presented an efficient preconditioner and a two-grid method for classical optimiza-
tion methods on finding a stable CVT. All optimization methods included in produce a stable
CVT, see discussion in Sect. 5.2 in [27]. Comparing with Lloyd’s method and NLCG and
LBFGS methods without preconditioner, we have a much more efficient method for finding
a stable CVT. Although we only show 1D and 2D results, our approach is easily adapted for
meshes on surfaces and in 3D. For surface meshes, the graph Laplacian construction is the
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Fig. 18 Two grid method and single grid comparision of energy and weighted error. a PLBFGS(7) with
7,894 generators on the fine grid, iteration versus energy, b iteration versus log of l2-norm of weighted error,
c PNLCG with 7,897 generators on the fine grid, iteration versus energy, d iteration versus log of l2-norm
weighted error

Table 6 Data table for Example 6

Method Grid Level nFeval Time (s) E ‖D−1F‖
Lloyd Two Coarse 1,000 54.47 9.9331e−5 2.1608e−3

Fine 1,000 275.26 3.8728e−5 9.2573e−5

Single – 1,000 274.89 3.9421e−5 4.6894e−4

PLBFGS(7) Two Coarse 46.55 3.12 1.4347e−4 9.0291e−5

Fine 213.45 55.20 3.4767e−5 9.8198e−7

Single – 285.65 76.85 3.6781e−5 8.0917e−7

PNLCG Two Coarse 68.85 6.74 4.2861e−5 8.2985e−5

Fine 168.60 47.89 3.6463e−5 9.5912e−7

Single – 252.25 71.88 3.7439e−5 9.6393e−7

Comparison for Lloyd’s method, PLBFGS(7) and PNLCG with a single grid and two-grid method. Results
are averaged from 20 runs with a coarse grid starting at 2,000 generators. Average number of generators on
the fine grid is 7,895
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Fig. 19 Comparison of final energy values for 20 simulations for two and single grid methods. a PLBFGS,
b PNLCG

same as 2D. For 3D, the Voronoi tessellation can be decomposed into a tetrahedral mesh,
and the graph Laplacian is constructed through tetrahedrons.

We plan to apply our fast methods for mesh generation and optimization [10,30,34],
image processing and computer graphics [11,12], and other applications [9].
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