Real Analysis qual study guide
James C. Hateley

1. MEASURE THEORY
Exercise 1.1. If A CR and € > 0 show 3 open sets O C R such that m*(0) < m*(A) +e.
Proof: Let {I,} be a countable cover for A, then A C U I,,. Since m*(0O) < m*(A) + e. This implies

n=1

that

AcCU I,

oo
m*(0) —e < m*(A) where m*(A) = inf {Zl([n)}
n=1
If I(Ix) = oo for some k then there is nothing to show, so suppose (an,b,) = I, then [(I,) < oo, Vn.
Let O,, = (a, + 27 ™¢,by,) then we have
W{On) = by —a,—2"" < I(I,)
= D> UOn) = bp—an—Y» 27" = 3 by—an—¢

= mr(JOw —e <m(4)

So let O = UO”’ then m*(0) —e < m*(A4) -. 30 C R st m*(O) < m*(A) +e€eg

Exercise 1.2. If A,B C R,m*(A4) =0, then m*(AU B) = m*(B)
Proof: m*(AU B) < m*(A) + m*(B), and m*(B) < m*(AU B), hence we have
m*(B) <m*(AUB) < m"(A)+m"(B) = m"(B)
~m*(AUuB) = m*(B)pg
Exercise 1.3. Prove E € M iff Ve > 0,30 C R open, such that E C O and m*(O\E) < ¢
Proof: (=) O\E = E°N O implies that m*(O\F) = m*(E° N O), but we have
m*(0) =m*(E°NO)+m*"(ENO)

So suppose m*(E) < oo = m*(E°NO) =m*(0O) —m*(ENO). Let I, be a countable cover for E, so
I, = (an,by). Let O, = (ay, b, +27 ™€) and let O =|JO,,. Then

m*(0) = Zl(On) = 22_”6 +b,—a, =€+ an — an, and m*(ENO) =m"(E)
since £ C O. So we have
m (ENO) = m*(E) <Y I(I,) = Y by—an
= m(EN0) < > 10, =Y I(I,)
= e—i—an—an—an—an = €
.30 C R open, st E C O and m*(O\E) <
(<) Conversely, suppose Ve > 0,30 C R, such that E C O and m*(O\FE) < € and that O € M. Then
m*(0) =m*(E°NO)+m*(ENO), but m*"(E°NO)=m*(O\F) < ¢
This implies that

m* (0)=m*"(ENO)+e = m*"(O)=m"(E)+e .. Ee€Mp
1
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Exercise 1.4. Prove E € M iff Ve > 0 3F C R closed, such that F' C E and m*(E\F) < €
Proof: (=) E\F = F°N E this implies that m*(E\F) = m*(F° N E), but we have
m*(F)=m"(F°NE)+m"(ENF)

So suppose m*(E) < oo = m*(F°NE) = m*(F) —m*(F N E). Let I, be a countable cover for E,
where I, = (an,by). Let F,, = [an, b, — 27 "¢] and let F = J F,,. Then we have

m*(F):Zl(Fn):an—an—ane:an—an—e,

and m*(ENF) =m*(F), since F C E. So
SUI) =D by —an

m* (ENF) = m*(F)
= m*(EﬁF)SZl(In)—ZZ(Fn) = an—an—an—an—Fe = ¢
..3F C R Closed, st F C E and m*(E\F) <e¢

IA

(<) Conversely, suppose Ve > 0,3F C R, such that F' C E and m*(F\F) < € and that F' € M. Then
m*(E) =m*(F°NE)+m"(ENF),
but m*(F°N E) =m*(E\F) < e. This implies that
m"(E) <m*"(FNE)+e = m"(E)<m"(F)+e¢ .. EecMp

Let E be a set of finite outer measure and 0 a collection of intervals that cover E in the sence
of Vitali. Then, given € > 0 there is a finite disjoint collection {Iy} of intervals in @ such that

N
1w (E\ U In> <e

Exercise 1.5. Does there exists a Lebesque measurable subset A of R such that for every interval (a,b)
we have u(AN (a,b)) = (b—a)/27?

Proof: First suppose that there is such a mesurable set A such that 0 # u(AN(a,b)) =a < (b—a)/2.
Then there exsits an open set O such that A C O and p(O\A) < ¢, so let € = a/2. Now O is open, so
there are disjoint intervals (xg, yx) such that O is a countable union of these intervals. So

OnN(ab) = U [(zk, yk) N (a,b)] = U(Ckzadkz)'

k=1 1

Hence p(O N (a,b)) = >, dy, — cx,, and we have

ANON(a,b) = AN (a,b) = JIAN (e, di,)]

!
Now 1
a = IM(A N (CL, b)) = 9 Z(dkz - Ckl)
1

but

Z(dkz — )

l

n(O N (a,b))

p((O\A) N (a, b)) + (AN (a,b))

< WO\ 4+ >~ )
< €+ % Z(dkl — k)

But this implies that



So p(A) = 0. which implies that u(A°) = co. Now if there were to exsits such a set A we have u(A°) =0,
and so

b—a=p((a,b)) = m(AN (a,)) + 1(A° 1 a,5)) = p(A° N (a,1)) = 5 (b~ a)

So there cannot exist such a set .

Exercise 1.6. Assume that E C [0,1] is measurable and for any (a,b) C [0,1] we have
1
p(E [a.) > (b0
Show that u(E) = 1.

Proof: By the previous problem, using the same proof, we know that p(E°) = 0. So the result is
shown.

Exercise 1.7. Let Ey, ..., E, be measurable subsets of [0,1]. Suppose almost every x € [0,1] belongs
to at least k of these subsets. Prove that atleast one of the Ey, ..., E, has measure of at least k/n.

Proof: Suppose not, then for each i we have u(E;) < k/n. Define a function f(z) as follows.

where x g, denotes the characteristic function of E;. Now since all most all z € [0, 1] are in at least k
of the F; we have f(x) > k almost everywhere in [0, 1]. Now

k:/ k dx < f(z) dx = / Xg, dr =Y pE;
[0,1] [0,1] ; [0,1] Z

i=1
But this implies that

zn:MEi < zn:s =k
i=1 i=1

Which is a contradiction, hence at least one E; has u(E;) > % 0.

Exercise 1.8. Consider a measure space (X, A, 1) and a sequences of measurable sets E,, n € N, such
that

Z w(Ey) < 0o
Show that almost every x € X is an elemen;l:o} at most finitely many E! s.
Proof: It suffices to show that u(x : € NE,, ) = 0. So consider the following
mli_r)noou (ac 1T € ﬁ Enk>

k=1
If we have shown the above limit is zero, then we’re done. To see this look at the following sum,

o) N [e%s)
Zu(m:xe ﬂEnk> <Z,u(En)<oo
N=1 k=1 n=1
and hence

m
Tiiinmu<z:x€ ﬂEnk> =0
k=1
Therefore almost every z € X is an element of at most finitely many E/ s 0.
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Exercise 1.9. Consider a measure space (X, A, n) with u(X) < oo, and a sequences f, : X — R of
measurable functions such that lim f,(z) = f(x) for allx € X. Show that for every € > 0 there exists

a set E of measure u(E) < e such that f,, converges uniformly to f outside the set E.
Proof: This is Ergoroft’s theorem. See below.

If f, is a sequence of measurable functions that converge to a real-valued
function f a.e. on a measurable set F of finite measure, then given n > 0, there is a subset A of E with
u(A) < n such that f,, converges to f uniformly on E\A

Proof: Let n > 0, then for each n, there exists a set A, C E with uA, < n27", and there is an
N,, such that for all z ¢ A, and k > A, we have |fx(z) — f(x)] < 1/n. Let A = UA,, then by
construction A C F and pA < 1. Choose ng such that 1/ng < n. Now if z ¢ A and k > N, then
|fx(x) — f(x)] < 1/ng <n. Therefore f, converges uniformly on E\A.

Exercise 1.10. Let g be an absolutely continuous monotone function on [0,1]. Prove that if E C [0,1]
is a set of Lebesgue measure zero, then the set g(E) = {g(z) : © € E} C R is also a set of Lebesgue
measure zero.

Proof: Let E C [0,1] with zero measure, then for any epsilon € > 0, there exists an open cover O for
E, such that u(O\E) < e. Now O being open in [0, 1] implies that O = U(an, b,), where (a,,b,) are
disjoint. Now by absolutely continuity of g(z) we have

Vn>030 st > pl)<d  — > |gI.n0,1])] <n
n=1

n=1
Now g(E) C U|g(I, N [0,1])| which implies that u(g(E)) < n, so given an n there exists a ¢ > 0 such
that the above hold, then let 6 = €. Since 7 is arbitrary we have u(g(E)) =0 g

The above problem (1.10) is commonly refered to as Lusin’s N condition.

Exercise 1.11. Suppose f is Lipschitz continuous in [0,1]. Show that
(a) p(f(E)) =0 if p(E) = 0.

(b) If E is measurable, then f(FE) is also measurable.

Proof: For part (a) if f is Lipschitz continuous then it is absolutely continuous, and so if u(E) = 0,
then p(f(E)) = 0 (see above proof).

For part (b) Let E be a measurable set and let ¢ > 0. Now there exists an open set O such that
u(O\E) < €, where O is a disjoint union of intervals I, = (a, b, ). Now since f is absolutely continiuous,
it can be approximated by simple functions, namely x;,. Choose these functions such that

- Z CnX1I,

n=1
Now u(x1,) = bn—ayn > 0, so it is measurable. Let o € R, then the f(E) is measurable if {z : f(z) < o}
is a measurable set for any o € R. but we have now

{o:f@)<a} C {o:xs, +e<a}

We know simple functions are measurable, and our choice of simple functions approximates f(x),
therefore f is measurable .

<€

Let f be a measurable real-valued function on an interval [a,b]. Then given
d > 0, there is a continuous function ¢ on [a,b] such that p{z : f(z) # ¢(x)} < o



5

Proof: Let f(z) be measurable on [a,b] and let § > 0. For each n, there is a continuous function h,,
on [a,b] such that
pla : [hn(z) = f(2)] 2 027772} < 627777
Denote these sets as E,,. Then by construction we have
|hn(x) — f(2)] < 02772, for = € [a,b]\E,

Let E = UE,, then uE < §/4 and {h,} is a sequence of continuous, thus measurable, functions that
converges to f on [a,b]\E. By Egoroff’s theorem, there is a subset A C [a, b]\ E such that uA < §/4 and
hy, converges uniformly to f on [a, b]\(FUA). Thus f is continuous on [a, b]\(EUA) with u(EUA) < §/2.
Now there is an open set O such that (EU A) C O and p(O\(EU A)) < §/2. Then we have f is con-
tinuous on [a,b]\O, which is closed. Hence there exists a ¢ that is continuous on (—o00, o) such that

f = on [a,b\O, where pfa : f(z) # (2)} < u(0) < &

Exercise 1.12. Prove the following statement. Supoose that F' is a sub-c-algebra of the Borel o-algebra
on the real line. If f(x) and g(x) are F-measurable and if

/fdx:/gdac, VAeF
A A
Then f(x) = g(x) almost everywhere.

Proof: Let i denote the Lebesgue measure on the Borel sets. Now since both f and g are F-measurable,
for any n > 1, the sets

Ap ={z: f(x) —g(z) = 1/n},  Bnp ={x:g(z) - f(z) = 1/n}

are both measurable and contained in F'. Now we also have

A={z: f(z)—g(x) >0} = (| An, B={z:g(x)— f(x)>0}= () Bn

contained in F' since F' is a o-algebra. Now using the convenetion that co — oo = 0, we have

/Af—gdsz

If u(A) > 0 then as f — g > 0 implies by that / f—g dx > 0, which is a contradiction. Hence we have
A
#(A) = 0. By the same argument also have

/ng—gfdx::O — u(B)=0.
B

Now AN B =0 and AU B is the set of points where f(z) # g(z), hence f = g almost everywhere .

Exercise 1.13. Let E CR. Let E> = {e? :e € E}

(a) Show that if u*(E) = 0, then p*(E?) =0
(b) Suppose p*(E) < oo, it it true that p*(E?) < oo

Proof: For part (a) consider the intervales I,, = [n,n+1] for in Z. Now consider the function f(z) = 2.

If p, = U(ag, b) is an open subset of I, such that for § < 0

n N
ppn) <6 = Y 1f(0k) = flaw)| =107 —ai| < (2ln|+1)5
k=1 k=1

Hence f(z) is absolutely continuous on I,,. Now a function is absolutely continuous on an interval I if
and only if the following are satisfies:

f is continuous on [



f is of bounded variation on I
f satisfies Lusin’s (V) condition, or for every subset E of I such that pu(E) =0, pu(f(E)) = 0.

The above condition for absolute continuity is the Banach-Zarecki Theorem.

Now define E,, = EN1,, then E,, C I, and hence by Lusin’s (N) condition p(f(E,)) = 0. Now the set
f(E,) is given by

f(B) ={e*:ec ENL,}
Now
E*=|J{’:ec EnI,} = ] f(En)
nez neE”Z
and so

p(E?) < ZM*(En) = ZM(En) =0

nez nez

For part (b), the statement is not always true. For each n € N, let E,, = [n,n + n~3/2), then for each
w(E,) =n~3/2. Now if E = UE,, then

W(E) =Y mE) =Y s

2 and the

n’

Now E2 = [n?,n? 4 2n~"2 + n=3), and so u(E2) = 2n~ Y2 + n=3 > n=1/2, Also E? = UE
sets E2 are mutually disjoint. Hence
w(Ey) < Z niz o0

1 n=1

NE

p(E?) =

n

Exercise 1.14. Suppose a measure p is defined on a o-algebra M of subset of X, and p* is the
corresponding outer measure. Suppose A,B C X. Then A ~ B if u*(AAB) = 0. Prove that ~ is an
equivalence relation.

Proof: For symmetry we have, by definition, AAB = (AUB)\(ANB) = (BUA)\(BNA) = BAA,
and so if p*(AAB) =0, then p*(BAA) = 0. Hence A ~ B if and only if B ~ A.

For reflexivity, we have (AAA) = A\A = (), hence A ~ A.

For transitivity, let A, B,C C X. First notice, by element chasing, AAC C (AAB) U (BAC), and so
we have

0 < 4" (AAB) = u*(AAB) U (BAC)) < u*(AAB) + p*(BAC)

Now if A ~ B and B ~ C, then p*(AAB) = p*(BAC) = 0, and so p*(AAB) = 0, hence A ~ C.
Therefore ~ is an equivalence relation on X .

Exercise 1.15. Let (X, M, u) be a measure space.

(a) Suppose u(X) < oco. If f and f, are measurable functions with f, — f almost everywhere,
prove that there exists sets H, By, € M such that X = H U U Ey, where w(H) = 0 and f, — f

k=1
uniformly on each Ej

(b) Is the result of (a) still true if (X, M, u) is o-finte?

Proof: For part (a), since pu(X) < oo and f,, — f almost everywhere, by Egoroff’s theorem, for any
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k € N, there is Hy € M such that u(Hy) < 1/k and f, — f uniformly on E; = Hf. Now define
H =N Hy, then H C Hy, and so 0 < pu(H) < 1/k for all k, hence u(H) = 0. Now

and so

where fi converges uniformly to f on any Ej 0.

For part (b), the statement is true. Since X is o-finite, we can write X as a disjoint union of finite sets,
i.e.

X = Uanhereu(Xn)<oo Vn X;NX; =0 fori#j

n=1

Now for each X, apply part (a). Then we have

X, = Hy U | Epn with p(H,) =0
k=1

Let H = U2 H,, then u(H) = ZM(H”) = 0. So we have
n=1

- - Gfee(@n)

n=1 k=1
n=1 n,k=1
= HU G Ek,n
n,k=1

Now H has measure zero and {Ek,n}f;}k:l is a countable collection of open sets for which f, — f
uniformly .

Exercise 1.16. Suppose f, is a sequence of measurable functions on [0,1]. For xz € [0,1] define
h(z) = #{n : fo(x) = 0} (the number of indicies n for which f,(x) = 0. Assuming that h < oo
everywhere, prove that the function h is measurable.

Proof: First consider the measure space ([0, 1], [0, 1], i), where p is the Lebesgue measure. Since f,
is measurable for all n we know that the set {z : f,(z) = a} is measurable, for & € R. In particular,
the set {x : f,(z) = 0} is measurable. Now we have

U {z: fo(x) =0}

is measurable with respect to p, since it is the countable union of measurable sets. Now consider the
measure space (N, o(N),v) where v is the counting measure. Now we know that

hz)={n: fo(z) =0} < o0
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So consider the following:

{z:h(x)=a} = {x:#Ufn(x)—O:oz}
= {x:ZV{n:fn(x)ZO}:a}
C {x : v{n: fo(z) =0} < oo}
c 01

Hence the function h(z) is measurable .

2. LEBESGUE INTEGRATION

Exercise 2.1. Consider the Lebesgue measure space (R, M, ). Let f be an extended real-valued M -
measurable function on R. Forx € R andr > 0 let B.(z) ={y € R: |y —z| < r}. Withr > 0 fized,
define a function g on R by setting

o(z) = /B W) por <R

(a) Suppose f is locally p-integrable on R. Show that g is a real-valued continuous function on R.
(b) Show that if f is p-integrable on R then g is uniformly continuous on R.

Proof: If we show part (b), then part (a) follows by the same argument. Let x € R. Now if f is
integrable on R? so is |f|. Hence if € > 0, there is § > 0 such that if u(A) < d, then we have

€
< -.
IREEE

Now as B(x,r) and B(y,r) are open balls with area mr? with centers offset by |y — |, we have that

u(B(,r)\B(y,r)) = By, r)\B(z,7)) = 0asy — x

Hence given § > 0, there is an 1 > 0 such that if |y — z| < n, then
w(B(z,r)\B(y,r)) = n(B(y,r)\B(z,r)) <4

So for |y — x| < 1, we have

mmww@ﬂg/

€ €
fldus [ ldu<S+S<e
B(y,r)\B(z,r) B(z,m)\B(y,r)

2 2

That is, g() is uniformly continuous on R? .

If ¢ is a convex function on R and f an integrable function on

[otrey de=o ( [ dt) |

a=/f(t) dt, y=m(z—a)+ o)

Then y is the equation of a supporting line at «. Now we have

o(f(t) 2 m(f(t) —a) + ¢(a) = /fb(f(t)) dt = ¢(a) dt o

[0, 1].

Proof: Let
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Let f,, be a sequence of measurable functions defined on a set
E of finite measure, and suppose that there is a real number M such that |f,| < M for all N and all
x. If f(z) =lim f,(z) pointwise in E, then

/Eleim/Efn.

Proof: Let € > 0, thn there is an N and a measurable set A C E with uA < ;57 such that for all
n > N and z € E\A we have |f,(z) — f(2)] < 5-5%. Now,

2u(E) "
Jor Jol = 1o

< /Elfn—fl
- /E\A|fn—f|+/A|fn—f|
< %Jrg:e

Therefore we have / fn— / fo
E E

Exercise 2.2. Suppose f, is a sequence of measurable functions such that f,, converges to f almost
everywhere. If for each ¢ > 0, there is a C' such that

/ | fn] dz < e.
[fnl>C
Show that f is integrable on [0, 2]

Proof: First the interval [0, 2], is not important. The result can be shown for any finite interval. Fix
e > 0, now if f is to be integrable, then so is |f|. Let C be such in the hypothesis, by Fatou’s lemma

we have
2 2
/ |f] dz < liminf/ | fr| da
0 0
— liminf (/ fol d:c—i—/ ol d:c)
[0.2)n{|fn|>C} [0,2]n{| f21<C}
< et Oul0,2)

2
Therefore / |f| dx is bounded and hence f is integrable .
0

If f, is a sequence of nonnegative measurable functions and f,(z) —
f(z) almost everywhere on a set E, then

/Efgliminf/Efn.

Proof: Since the integral over a set of measure zero is zero, (WLOG) we can assume that the converges
is everywhere. Let h be a bounded measurable fuction which is not greater that f and which vanishes
outside a set A C F of finite measure. Define a function h,,, by

hn(z) = min{h(z), fn(2)}-

Then h,, is bounded by the bound for h and vanishes outside A. Now h,, — h pointwise in A, hence
we have by the bounded convergence theorem

/hz/h:lim/hngliminf/fn.
E A A E



10

Taking supremum over h gives us the result .

Let f,, be an increasing sequence of nonnegative measurable

/leim/fn.
/fgliminf/Efn.

Now for each n, since f is monotone, we have f,, < f, and so

/f</f = hmsup/f</f = [ [0

Let the positive part of f be denoted by f*(z) = max{f(z),0}, and the negative part be de-
noted by f~(z) = max{—f(x),0}. If f is measurable then so are f and f~. Futhermore f = f* — f~
and |f| = f*+f".

functions, and let f = lim f a.e. Then

Proof: By Fatou’s lemma we have

Exercise 2. 3 Let f be a real-valued continuous function on [0,00) such that the improper Riemann
integral fo ) dx converges. Is f Lebesgue integrable on [0, 00)?

Proof: f does not have to be Lebesgue integrable. Let n > 0 and define a function f,, as follows

T_Hx z € [2n,2n + 3]

fu(z) = n—_Hx z€2n+3,2n+ 3

on z€2n+2,2n+2]

Now f,, is continuous on [0, 00) and when considering Riemann integration, we have

2n+1 2n+2 %)
/ fn(z) dx and / dr=0 = / frndx=0
0 0

for each fixed n. Now define -
n=0

Then since f, has disjoint support for any N € N and 2N < y < 2N + 2, we have
y y
| t@ o= [ s an,
0 2N

and so the Riemann integral of f(x) converges to 0 on [0,00). Now if a measurable function f is
Lebesgue integrablem then so is |f]. But,

o0 oo 1
dr =2 — = 0.
/0 e =23 g =oc

Therefore f is Riemann integrable but not Lebesgue integrable .

Exercise 2.4. Consider the real valued function f(x,t), where x € R™ and t € I = (a,b). Suppose the
following hold.

(1) f(z,-) is integrable over I for all x € E
(2) There exists an integrable function g(t) on I such that |f(z,t)] < g(t), Ve € E,t € I.
(8) For some x¢ € E then function f(-,t) is continuous on I

Then the function F(x) = /f(x,t) dt is continuous at xg
I

Proof: Let z, be any sequence in E such that x,, — zy. Define a sequence of functions as f,(t) =
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f(xn,t). Then by hypothesis we have f,(¢t) < g(t), for t € I almost everywhere. Let f(t) = f(xo,1),
now since f(z,t) is continuous at xg, we have f,, — f. So by the Lebesgue Dominated Convergence
theorem we have

n— oo

tim [ 1falt) = £(2)] de =0

Hence we have
Plon) = Pl =| [ 0= 10 ] < [15,0) = 0] at =0
I I
Or F(z) is continuous at zp g

Let g be integrable over F and let f,, be a sequence
of measurable functions such that |f,| < g on E and for almost all z € E we have f(x) = lim f,(x).

Then
/E f =1im /E fu.

Proof: Assuming the hypothesis, the function g — f,, is nonnegative, so by Fatou’s lemma we have

o= <imint [ (=1,

Now since |f| < g, f is integrable and we have

[Eg—/EfS/Eg—limsup[Efn
[ sz [ 5

/Efgliminf/Efn

Hence we have

Considering g + f,,, we have the result

and so the result follows .

Exercise 2.5. Show that the Lebesgue Dominated Convergence theorem holds if almost everywhere
convergence is replaced by convergence in measure.

Proof: Suppose that f,, — f in measure, and there is an integrable function g such that f,, < g almost
everywhere. Now |f,, — f| is integrable for each n, and |f, — f|x[—&,k converges to |f, — f|. By the
Lebesgue Dominated Convergence theorem we have

/_Zlfn—fle/Run—fl

Let € > 0, then there exsits an Ny such that

/w>No ‘fn_f‘ < g

also for each n, given € > 0, there exists § > 0 such that for any set A with p(A) < § we have

JREEE

Let A = {|fn — f| > 0}. Then there exists an Ny, such that for all n > Ny, we have A = {|f, — f| >
5} < 4. Let N = maX{No,Nl}

€ €
/Ifn—f|=/ Ifn—f|+/ Ifn—f|+/ famfl< S+ SraNb <o
X |z|>N [-N,N]NA [-N,N]NAc

Let 6 = L, therefore we have / |fn—fl—0,as n — oo o.
6N v
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Exercise 2.6. Show that an extended real valued integrable function is finite almost everywhere.

Proof: Consider the measur space (X, M,u). Let E = {z € C :|f| = co}. Now since f is integrable,
it is measurable hence the set F is measurable. Now suppose p(E) > 0, then as |f| > 0 on E we have

s> [ Ufldnz [ 1= o
X E
This contradicts to the integrability of f, thus u(E) = 0. Therefore f is finite almost everywhere .

Exercise 2.7. If f, is a sequence of measurable functions such that

§/|fn|<oo

o0

Show that Z fn converges almost everywhere to an integrable function f and that

n=1
[1-5 0

Proof: Define gy to be the partial sums of |f,|. Then gy is measurable since each f,,, and hence |f,,]
is measurable. Let g = lim g,,, then g is measurable as it is the limit of measurable functions. Now

/fz/gjlun:i/unwoo

So g is integrable, and hence ¢ is finite almost everywhere. Define f(z) as follows

Fa) = {22"_1 [ fa it lg(a)] < oo

0 otherwise

Then gy — f as N — oo almost everywhere. We also have

11 < fo

= /i;f
/gm
_ /g<oo

N

o0
1 n=1

n=

IN

IA

We also have that
lgn| =

N
>t
n=1

almost everywhere. Now by the Lebesgue Dominated Convergence theorem, we have

/f:/hmgNzhm/gN:hmi/fn:g/fnm
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Exercise 2.8. Let (X, M,pu) be a measure space, and let f, be a sequences of nonnegative extended
real-valued M-measurable functions on X. Suppose lim f,, = f exists almost everywhere on X and
fn < f almost everywhere. For n € N, show that

/fdu= lim/fndu
X n—oo X

Proof: First if [ f dx = oo, applying Fatou’s lemma we have
/ lim inf f, dp < lim inf/ fn dp < lim fn dp < occ.
X n—oo n—oo X n—oo X

And so lim fn d,u:/fdx:oo.
n—oo X

Now if [ f dz < oo, since f,, < f almost everywhere, we have |f,| < |f| almost everywhere, and we
have lim f,, = f exists almost everywhere, we have by the Lebesgue Dominated Convergence theorem

/Xllfnl—lfll duS/XIfn—fldu=0 = lim andu=/deuu

Exercise 2.9. Let f be a nonnegative Lebesque measurable function on [0,1]. Suppose f is bounded
above by 1 and fol f dx =1. Show that f =1 almost everywhere on [0, 1]

Proof: let 1 > € > 0 and define the set E as
E={zec0,1]:0< f<1—¢}

Now we have

1:/01fdx

chdx—F/Efda:

fdx—|—/1—edm
Ee E

H(E®) + p(E) — en(E)
1—eu(E)

IN

IA

Hence since this holds for any € € (0,1), we must have p(E) = 0. Therefore f = 1 almost everywhere
on [0,1] 0.

Exercise 2.10. Let f be a real-valued Lebesgue measurable function on [0,00) such that:

(1) f is locally integrable
(2) lim f=c

Show that lim l/ fdzr=c
0

a—oo
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Proof: Let € > 0, then there is an M > 0 such that if z > M, then |f(z) — ¢| < e. Let a > M, now
1/ 1] [

f/fdxfc f/f—cdx
@ Jo alJo
1 a

< [ U-d
@ Jo

1 (M 1 [
— o[ lreddosy [ 1r-dd
a Jo a Jy

1M 1
< f/ |f —c| dz+e—(a— M)
a Jo a

I M
= f/ If —c| dz+e(l——)
0 a

a

Now since M is fixed, and by the integrability of f, we have

1 a
f/ fdx—c
aJo

and since this is for any € > 0 and all a > M, we have

1 a
=0 < limf/fdx:cD.
0

a—0o0o

<e€

1 a
- fdxr—c
aJo

lim
a— o0

Exercise 2.11. Let f be a real-valued uniformly continuous function on [0,00). Show that if [ is
Lebesgue integrable on [0,00), then lim f(x) = 0.

Proof: First if f is Lebesgue integrable, then so is | f|. Now decompose the integral as follows
k+1

e’} o0 k
oo>/0 |f(m)|dxzkz_:1/k " @) de. denote ak:/k \f(2)] da.

Now aj > 0, and since the integral is convergent this implies that a — 0 as & — oo, which inturn
implies that ay is Cauchy. So we have

m
Do

k=n

o0

<e Ynm>N = / |[f(z)] doz < e
N+1

Ye >0, 3N s.t.

Since |f(z)| is positive and € is arbitrary this implies that f(z) — 0 as N — oo 0.

Exercise 2.12. Let f € £L1(R). With h > 0 fized, define a function ¢, on R by setting

x+h
én(x) = % /711 f@&) p(dt), for x € R

(a) Show that ¢, is measurable on R.
(b) Show that ¢p, € L1(R) and ||onllr < || f]]1-

For part (a) since f is integrable, then f is measurable. So the integral of a measurable function is
measurable, thus ¢, (x) is measurable.

For part (b) First apply the change of variable y = x — ¢, then we have

z+h —h h o0
/ £(t) pldt) = — /h f( — y) pldy) = /_ fw =) ) = /_ @ — )Xt () 1(dy)

—h
Where x[_p,n)(y) is the charactistic function on [~h, h]. So we have

1 1 1
on(x) = %f*X[—h,h] = on(@)| = %”fX[—h,h]”l < ﬁ“f”lu){[—h,h]”l = |Iflh o-
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Exercise 2.13. Let f be a Lebesque integrable function of the real line. Prove that

lim [ f(z)sin(nz) dx = 0.

n—oo R

Proof: If f is intergrable, then there exists a sequences of step function ¢,, such that

Ve>03Ns.t./\f—¢n|<§

Now we have

/Rf(m) sin(nx) dx

IN

/|f(x) sin(nx)| dz

IN

/| — ¢n(x)) sin(nx)| dx—i—/ |pn () sin(nz)| dx
< §—|—/R|¢n(m) sin(nz)| dr

Now ¢,, being a step function we have it as the sum of simple functions over disjoint interval I,,, where
U, I, =R, ie.

n=1

oo
= E Ak, n X1y, n
k=1

and so we have

. sin(na)| dx

[ ten(@sinna) da

o0

Z \ak,n|/ |sin(nx)| dz — 0 as n — oo
Ik,n

k=1

Hence for some N large enough and all n > N we have

x) sin(nz) dzx

<%+/R|¢n(x)sin(nx)| <§+§:GD

3. CONVERGENCE

Exercise 3.1. Consider the Lebesque measure space (R, M, ) on R. Let f be a p-integrable extended
real-valued M-measurable function on R. Show that

lim / @+ k) — f(@)] plda) = 0.

Proof: First since f(z) is integrable, we have

/fx+h (dz) /f p(dz) VheR

Also since f is integrable, there exists a sequence of continuous function ¢,,, such that

[15@) = on(@)] utis) <

Now |¢pn(z + h) — ¢n(z)| < § if [h] < 6. Let N be large enough, then

w\m

/ 1~ Fla+h)| plde) < / 1 = (@) n @+ ) — F@-h) [+ (2 +h) — b (@) |ldz) < &+

Therefore we have

,g;r%/kumh) — J(@)] pldz) = 0 o
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Exercise 3.2. Let (X, M, u) be a measure space. Let f, and f be an extended real-valued M- measur-
able fuctions on a set E € X such that lim f, = f on E. Then for every a € R we have

n—oo

w{E: f>a} < lim infu{E: f, > a} and p{E : f <a} < lim inf u{F: f, < a}

Proof: I will only show the first inequality since the proofs are identical. Let A, = {x € E : f(x) > a},
Aon ={z € E: fr(x) > a} and let x4 denote the characteristic function of A. First we need to show
XA, — XA in measure. Let € > 0, denote the set F,,_ , by

> e}

Foen = {reE: |XA(1—€,'!L — XAa—-
Now we want to show that the measure of this set is small. First notice that
Fé—s,n o {.TGAQ : |f7fn| <6}

Let « be in this subset, then this implies two thing. Firstif f(z) > a > a—e, and f,(z) > f(z)—e > a—c.
So we must have

Fa—e,nc{‘reAa:|f7fn|§€}

Now since f,, converges to f almost everywhere in F, it converges in measure, and hence the measure
of the set p(Fy—en) < €. This implies that x4, , converges to x4, in measure. Now Fatou’s lemma
holds for a sequence of functions converging in measure, so we have

/ X4, dp < liminf/ XAo, dp =  p{E:f>a} < lim infp{E: f, >a} g
E E n— oo

Exercise 3.3. Let g(x) be a real-valued function of bounded variation on an interval [a,b]. Suppose
that f is a real-valued decreasing function on [a,b]. Show that g(f(x)) is also of bounded variation. If
f is just a bounded continuous function is g(f(x)) still of bounded variation.

Proof: Since g is of bounded variation we have, let P be all the possible partitions of [a, b]
n
Vig)= sup > lg(x:) — g(zi1)|
{z:}eP ;4

Now fix € > 0 and pick an {z;} such that

N
VE(g) < lg(zi) — glmiza)| +e
=1

Now since f is decreasing on we have that f(x;41) < f(x;). Now call y; = fz,, {v:} U{a,b} then is a
partition of [a, b], and so we have

N n
Z l9(yi) — 9(yi1)| < S Z lg(x:) — g(zim1)| = Vi (g)

This can be done for any partition of [a, b]. Therefore g(f(z)) is also of bounded variation.

For the second part, no. Consider the function
xzsin (1) 2 #0
sy =) 7
1 z=0

and let g(z) = z. Now g(x) is a function of bounded variation on [—1,1] and f(z) is a bounded and
continuous on [—1, 1], but g(f(z)) = f(x), which not a function of bounded variation on [—1,1].

Exercise 3.4. Let (X, M,u) be a measure space. Let f, and f be an extended real-valued M- mea-
surable fuctions on a set E € X with u(E) < oo. Show that f,, converges to 0 in measure on E if and

. | fnl
only if lim dpu =20
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Proof: (=) If f, converges to 0 in measure then we have

plr € E:|fu| > €} <e.

[fn] [fn] /]
dp = d d
/El+|fn| s /Ael+|fn| M+/A§1+fn|

Now the function ﬁ,x > 0 is monotone, and uniformly continuous on any bounded interval. Now
1(Ae) < €, and so there is a § such that So we have

1l Fal
/Ae 1+ |fnl et /Ag L+ [fn] dp < p(Ae) + p(E)e < €(1 + p(E))

Call this set A.. Now

Hence we have

| fol
dpy—0ase—0
/El+|fn| :

(<) Now suppose that

| fnl
du—0ase—0
forvim

and suppose that there exists and ¢y such that p{x € E: |f,] > €} > €. Then we have

| fnl / [fnl € / |/n]
dp + du > + d
/A 1+‘fn| Az, 1+|fn| 1+€% Az, 1+|fn‘

€0
2
€0
2
1+€

2
€0 / | fnl / | fnl
< dp + <e€
1+ €3 Acy L+ [fal Ag, L+ | fal

Y

But this implies that

€

€

————— then we have a contradiction .
2(1+ €2) -

let € =

Exercise 3.5. Suppose u(E) < oo and f, converges to f in measure on E and g,, converges to measure
on E. Prove that f,g, converges to fg in measure on E.

Proof: Let h, = fngn and let h = fg. Now h and h,, are measurable since f,, and g, are. For each
0 > 0 define
An(0) = Az : |hn(z) — h(x)| = 6}

and let a,(0) = u(A,(9)). Now because f, and g, converge in measure, for any subsequences fy, , gn,
there are subsequences fnk]_ and Ini, such that both fnk]_ and gny, converge almost everywhere to f
and g respectively. Hence we have hnkj = fnkj hn,cj7 which converges to h = fg almost everywhere
on E. Now since hnkj converges almost everywhere and p(F) is finite we have that h,, converges in
measure. Now

n—0o0

lim |h— hy| < klim sup |h — hp, | — 0
—o0 n

Hence lim a, () = klirn an, (0) =0, or h, converges in measure 0.
— 00

n—oo

A sequences f, of measurable functions is said to converge to f in
measure if, given € > 0, there is an N such that for all n > N we have

pla | f(x) = fa(z)] > €} <€
Let a, be a sequence of real numbers. If there is an a € R, such that for every subsequence
an, , there is a subsequences for which any, — @, then a,, — a.
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Exercise 3.6. If f,, [ € Lo and f, — [ almost everywhere, then ||f, — fll2 — 0 if and only if
[ fnllz = [1f[]2-

Proof: (=) Suppose ||fn — fll2 — 0, now
=518 = [ £2-2ffus 2

> ||f||§*2/|fnf|+||f\|§

Holder’s inequality > || |5 — 2| full2l| fIl2 + /113
ANz = [ fnll2l?
Therefore as || f, — f||3 — 0 we have ||full2 — || f]|2-

(<) Now suppose || fnll2 — || f]l2 and f,, — f almost everywhere. Now for p > 1, and for finite a,b, we
have

la+b|" < 2°(|al” + [b]")
For each n, let
9n = 4(|fn|2 + |f‘2) - Ifn - f‘g

Now g, > 0 almost everywhere. Since f, and f are finite almost everywhere, by Fatou’s lemma we

have
/lim inf g, < lim inf/gn

Now since f, — f almost everywhere we have liminfg, = 8|f|? almost everywhere. So we have

811113 < 1iminf/gn. Now

1iminf/gn = 4liminf/|fn\2—|—4hminf/\f|2:hmsup/|fn—f|2

= 4liminf [|£, 3 + 4/l I3 — limsup || fn — £II3

= 8 full3 — limsup||fn - fI3
so we have 0 < —limsup || f, — f||3, hence 0 < limsup ||f,, — f||3 < 0. Therefore we have

limsup || fr — fll2 = liminf || fr, — flo=0 = ||fo—fll2—00.

A sequences of functions f, converges in measure to f if and only if for every sequences f,,,,
there is a subsequence fnk_j that converges almost everywhere to f.

Exercise 3.7. If f, > 0 and f,(x) — f(x), in measure then

/f d:v<hm1nf/fn

Proof: Let f,, be any subsequence of f,. then there exists an fnk,j such that fnkj converges to f
almost everywhere. By Fatou’s Lemma we have

/ f < liminf / fax,, = lim / fn, < liminf / In

Exercise 3.8. Suppose f, converges to two functions f and g in measure on D. Show that f = g
almost everywhere on D

Proof: Define the set E as E = {z € D :|f,(z) — f(x)| > 0}. Then if E, —{J:GD | fr(x) — f(2)] >
1/m}, we have E = lim E,,. Now if for some n we have |f,,(z) — f(z)| < 55 and |f,(z) — g(2)] < 75,
then we have

=gl < Un=f1+1fa— gl <
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And so
{o:10@ - 0l < g pn{e @ - sl < b {1 - g < 5

2m

which implies that

{oi100) - @12 gbn{esit@ - a@z o o {eilr0 -l 2 51

2m 2m

2

1 2

This implies that p<z:|f(x) —g(z)] > — ) < —. Now as n — oo, we have = — 0. Hence
2m m m

pia | f(x) —g(x)] >0} =0 0.

Exercise 3.9. Let f, — f in Lp(X, M, p), with 1 < p < oo, and let g, be a seqgences of measurable
functions such that |g,| < M < oo for all n, and g, — g almost everywhere. Prove that g, fn, — gf in
EP(Xv Ms ,LL)

Proof: Since f, — f in £,, since £, is complete we have f € £,. Also since |g,| < M, for all n this
implies that |g] < M. Now

||fngn7gnf||£:/(fngn*gnf)pSMp/|fn7f|p - Mp”fn*ng
So we have || fngn — gnfllp < M||fr. — fllp, and so

[ fagn —gfllp < M| fn — fllp =0 asn — oo
Therefore g, f, — gf in L,(X, M, 1) 0.

Exercise 3.10. Suppose f is differentiable everywhere on (a,b). Prove that f’ is a Borel measurable
function on (a,b)

Proof: f’is Borel measurable if {z : f'(z) < «} is a Borel set. So

flz)<a < nlLIr;On<f (m+i) —f(g;)> <a

1
< lim (f(m+)—f(x)>—a§0
n— 00 n n
. 1 « 1
for all but finitely many n < (f (m—i— ) — f(ac)) —— < —Vm
n n - m

& xeliminf{x:f<x+1)
n
& xEUm{m:f<x+;>—f(z)—2§;}wn

n>1k>n

e ceNUN{er(ory)-r0-2<1}

m>1n>1k>n

Now since f(z) is differentiable almost everywhere, it is continuous almost everywhere and so the f(x),
and f(z + 1\k) are measurable. Any linear combination of them is measurable, and so the set

(oo 0D -s0-2 22}

is measurable. Now the collection of all such sets form a o-algebra, and hence the countable union and
intersection of these sets are measurable. Therefore f’(x) is measurable .
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Exercise 3.11. Let c,; be an array of nonnegative exteneded real numbers for n,i € N.

(a) Show that
lim 1ancn P> Z lim infe, ;
T GeN ien "%
(b) If ¢ is an increasing sequences for each i € N then
Jdim > eni =D lim en
ieN ieN
Proof: For part (a) first let v denote the counting measure. Now if M = P(N), then (N, M,v)
forms a measure space. Now let a,, be sequences with ¢, € [0,00]. Then the function a(n) = a, is

M-measurable, and so
/ cdv = Z Cn,

neN
Then by Fatou’s lemma we have

/ lim infe, < lim inf/ Cn = Z lim infe,; < lim inf Z Cn,i O

N 00 n— o0 N pyrd n—oo n— o0 eN

For part (b) using the same measure space (N, M, v), we know that ¢, (i) < ¢, (i+1), so by the Monotone
convergence theorem we have

/ lim ¢, = lim Cn = Z lim ¢,; < lim ch,i O
Let F be an equicontinuous family of functions from a separable space
X to a metric space Y. Let f, be a sequence in F such that for each x € X the closure of the set

{fu(z) : 0 < n < oo} is compact. Then there is a subsequence f,, that converges pointwise to a
continuous function f, and the convergence is uniform on each compact subset X.

Exercise 3.12. Let {qr} be all the rational numbers in [0,1]. Show that

converges a.e. in [0, 1]
Z k2 /|(E — le
Proof: Fix ¢y > 0, consider the two sets

1 1 1 1
Bl=—— <= andBy=——_>—

Vie—aqi| — €o Vie—qr| €o

Now for each fixed z € [0,1]\Q we can enumerate the rationals however we want (Zorn’s Lemma).
Choose such an ordering so that

1
rE€E — < kT

AY4 |z — qr

That is the closer g gets to z, the large the index. Now let v be the counting measure, then we have

1 1 1 1
S N Y S
Z k2 vV iU—CIk| /El k2 \/|9C—(Ik| E, k2 vV |$—Qk|
11 1
—— —d
/El 2 eo+/EQ EET

e
— 14 o0
Nk2€0 k1+e

This can be done for all z € [0, 1]\Q. Therefore the series converges almost everywhere in [0, 1] g

A
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Exercise 3.13. Let (X, M, u) be a finite measure space. Let f,, be an arbitrary sequence of real-valued
measurable functions on X. Show that for every e > 0 there exists E C M with u(F) < € and a sequence
of positive real numbers a,, such that a,f, — 0 for x € X\E

Proof: First denote the set E,, = {x : m —1 < |f,| < m}, then the sets E,, are disjoint and cover X.
Now define a as such

— 1

> 2@

k=1

Since pu(X) < oo, if € > 0, there is an M,, such that
s Y B = e |fal > M)

m>M,,

Now choose these M,, such that M,, > M, _; for all n. Define the sets F,, = {x : |f,| > M,}, then we
have p(F,) < z5. Now if £ = UE,,, then

o]
n=1

Let a, = 1/M3, then if z € X\ F, then we have

Q a
HMX
:‘H

1

And so we have

PIIAEIED SINACIED DR =D ECRES
n=1 n=1

Therefore we must have a,, f,(z) — 0 on X\E g

Exercise 3.14. Prove that the gamma function

F(x)z/ tr et
0

is well defined and continuous for x > 0
Proof: Let let f(t,z) = t*le~! and 2 > 0 and decompose the integral into two integrals (0,1] and

(1, 00). For the first we have
1 1 o
/ t*7 et dt < / t*ldt=—|" <0
0 0 x 0

Now f(t,z) is continuous on (1,00), and also t2f(t,z) — 0 as t — oo, so there is an M such that M
bounds t2f(t,z) on (1,00). Now

o) 1 oo
1
/ et dt :/ e dt = M/ — dt =M
1 0 o 1

And so I'(z) is well defined on (0, 00).

To show continuity, let z,, be a cauchy sequence, and define f,,(t) = f(¢,z,). Now by continuity of
f(t,x) on (0,00) x (0,00), we have that for each z, f,, — f on ¢ € (0,00). now f(¢,x) is bounded on
(1,00), call this bound M > 1. Define a function g(¢) by

(t) = trth0<t<1
TIZ et 1<t <o

Now f,, f < g on (0,00), so by the Lebesgue Dominated Convergence theorem we have

/|n—ﬂ~0%n~m
0
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and so we have

D(zn) — T(2)| =

/oo Falt) — F(t2) dt’ < /OO Fult) = F(t2)| dt — 0 as n — 0o
0 0

This holds for any sequence such that x,, — = € (0, 00), therefore I'(z) is continuous on (0, 00) g.

4. Lp SPACES

Exercise 4.1. Let 1 < p < g < co. Which of the following statements are true and which are false?

Proof: Only part (d) is true. This can easily be shown for any finite interval, let I = [a,b] Let
f € Ly(I). Then [f|P € Ly/,(I). Now by Holder’s inequality we have

J 187 =< 18Pl 1

where r is conjugate to 1. Now

RS

p/q — i
1113 < WPy 0 = (57297 ) s = s
Hence we have || f||, < Hf||q/1(1)%, therefore f € L,(I) o.

For a counterexample to part (c) consider the function f(z) = (x —2)~*/2 and let p = 1 and ¢ = 2,
then f € £,(2,5]), but f & £,([2,5]).

For a counterexample to part (b) consider the function f(x) = (1 +22)~'/2 and let p = 1,q = 2, then
[ € Ly(R) but f ¢ L,(R).

For a counterexample to part (a) consider the counterexample to part (c¢) with the zero extension.

If p and ¢ are nonnegative extended real numbers such that

1 1
4 =1
p g

and if f € £, and g € £, then fg € £; and

[ 1531 <15bblsl
Proof: Assume 1 < p < 0o, and suppose that f, g > 0. Let h = g9=!, then g = h?~!. Now
ptf(x)g(x) = ptf(x)h?~" < (h(x) +tf ()P — h(z)”

so we have

pt/fg§ /|h+tf|t/hp — b+ ]2 — (Bl

and we also have
pt / fg < Bl + IEFIE ~ IA]2

now differentiating bothsides with respect to ¢t at t = 0 , we have

p / f9 < Bl F Bz =PIl llls o
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Exercise 4.2. Let f € L3/5([0,5]). Prove that

. I
tl—1>151+tl7/0 f(s) ds=0.

Proof: Applying Holders inequality we have

1 t
o [ro @] < o [
1 2/3 t 1/3
< s ([1rena) ([ a)
1
< L)t
t 2/3
< (/ |f(s)|3/2ds> S0 as t—0+4 o
0

Exercise 4.3. Suppose f € C1[0,1], f(0) = f(1), and f > f' everywhere.
(1) Prove that f > 0 everywhere.
(2) Prove that

o F- S /fd“

Proof: For (1), if f(z) = « € RT then everything holds. So suppose that, there exists an ¢ € (a,b) C
(0,1) such that f’(c) = 0. (WLOG) suppose that this ¢ is not a saddle point for f(z), also suppose that
f(e) < 0. Now if there is a § > 0 such that f(c) > f(z), for all z € B(c,d), then we have f'(x) > 0 for
x € (¢—9,c). This implies that f'(z) > f(x) for z € (c—6,c¢). If there is a § > 0 such that f(c) < f(x),
for all € B(c,d), then we have f/(z) > 0 for z € (¢,c + §), which implies that f'(z) > f(z) for
x € (¢,c+ ). For both cases we have a contradiction. Therefore f(z) > 0 for all z € (0,1). Now if
f(0) =0, f cannot be constant since 0 # 0. this implies that, for some § > 0, f'(x) > 0 for z € [0,4),
which is a contradiction. Therefore f(z) > 0 for all z € [0, 1].

For (2) since f > f’ we have that v/f — f7 is well defined on [0,1]. So,

([0) a0 = ([ T o)

1
f f,du/f fdu

b= d"/ fdn

The last line holds since f — f’ > 0. This implies that:

/Olfdué/olf{zf, dp o

Exercise 4.4. If f(z) € L, N Lo for some p < co. Show that

(a) f(x) € Ly for g > p.
(b) limg—oo | fllg = Il oo-

Proof: For part (a) Let 0 <p < ¢ < oo and let f € £, N Loo. Then if a = 5 and if 8 = -, then we

2

IN

Holder’s inequality

IN




24

have % + % = 1. Now applying Holder’s inequality we have

Ifle = / Tk

= [iseise
[1seisie

< MAPHLAT oo
Now since |f| < || f]loo almost everywhere and ¢ —p > 0 we have | f|97? < ||| f|?P||c almost everywhere,
and so ||| f|77P|| < oo. Also since f is monotone increasing, we have [||f|77?||c = || f]|&P. We also

have [[|f[P|l1 = [|f|l5 < oo. Therefore f € L, o.

For part (b), first suppose that ||f||l.c = 0. This implies that f = 0 almost everywhere and hence
[I£ll¢ =0 for all ¢q. Hence lim, || f|lq — || fllco trivially.

Now suppose that f € £, N Lo and || f|| # 0. From part (a) we have
1/ _p
1Fllg < (IFIB) " (S lloe) '™ 7

Now let € > 0, then on a set E of nonzero measure, |f| > ||f|lcc — €. If u(E) = oo, shoose a subset of E
with finite measure. Then we have
[ v
E

/(IlfHoo ot dy
E
-

Now this is for all ¢ > p. Let g, be a sequence of numbers greater than p that converges to co. Then
. 1 .
lim p(E)a [[|f[| =€ < lim inf |[f[g,
n—oo n—oo

S lim SuprHQn
n—oo

1F115

Y]

. 1 12
< dim sup (7)™ ([ flle)
n—oo
and so
I flloc — €l < lim inf[|f]lg, < lim sup[fllg, <|[flloc
n—oo n—oo

Since this holds for all € > 0 we have lim,, o || fll4,, = I|f|lco- Now since this is for any sequence ¢, we
have Timg oo [| fllg = [1f ]l

Exercise 4.5. Suppose that f € L£,([0,1]) for some p > 2. Prove that g(z) = f(z?) € L1([0,1])

Proof: f € £,([0,1]) implies that ||f||, < oo. In particular this implies that ||g|, = ||f(z?)]|, < oc.

Now
1 1
xT X 1'2 i
/0|g< )| d /0|f< ) d

1
1
change of variables (y = 22 / fly)——=| dy
w=a) = | 165

1
Sl

holder’s inequality

IN

1
v

P
p—1
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Now f € £,([0,1]) and since p > 2 we have Hﬁ

< 00, therefore g(x) € Ly([0,1]) 0.

1

Exercise 4.6. Let f € L,(X)NLy(X) with 1 <p < g < oo. Prove that f € L.(X) for allp <r <gq.

Proof: Let By = {z : 0 < |f(z)| < 1}, and By = {x : 1 > |f(z)|}, then E;, E; are a Hahn
decomposition for X'. Now suppose f € £, N L,. Now

11 /E f|r+/Ez o
/El f|p+[Ez I
Jur+ [ s

G+ IA1G o f € Lo(X)
Exercise 4.7. Suppose f and g are real-valued p-measurable functions on R, such that
(1) f is p-integrable.

(2) g € Co(R).
For ¢ > 0 define g.(t) = g(ct). Prove that:

IA

IN

li e dp = 0,
(a) C;@oAfg z
) timy [ foc du=g00) [ 7 dp.

Proof: For part (a) define h,(z) = f(z)g,(x). Now since f € £1(R) we know that f(z) < co a.e., and
since g € Cy(R) we know that
gn(x) — 0 as n — oo.

For a fixed z such that f(z) < oo we have
hn(xz) = 0asn — oo

Hence h,, — Oa.e.. Also since g € Cp(R) we have that there is some M such that |g(z)| < M. So we

have
/R () dp| < / @) gn(@)] dp < M / (@) dp < o

since f € L1(R). Hence by the Lebesgue Dominated Convergence theorem we have

lim fogn dp = lim /hn d,u:/ lim h, du=0
R n=oo JR R

n—oo n—oo

Proof: For part (b) we know that for all n > 0, fg, € £1(R). Define h,(z) = |f(z)g(zn~1)|, again
since g € Cyp(R) we have that there is some M such that |g(z)] < M. So

[ o) du’ < [ 1@ du< 21 [ 17| d < ox

Hence by the Lebesgue Dominated Convergence theorem we have

lim /fgl/n dp = lim hy, dp
R R

n—oo n—oo

= / lim h, du
R’I’LHOO

= / lim fgy/n dp
R’I’L—>OO

9(0)/Rf dp
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Exercise 4.8. Let E be a measurable subset of the real line. Prove that Lo (E) is complete.

Proof: Let f, be a Cauchy sequence of measurable functions in L.,. Then there exists and k € N such
that if m,n > Ny, then

1 1
||fn—fm|\oo<g, Yn,m>Np — |fn—fm|<Ea.e.

Now define the sets E,, , 1 by

1
Bnmi = {0 € B 11ufo) = fuo)] 2 1|
then for each n,m > N, the set E,, ., i is empty. Let F' be defined by
F= U En,m,k

k>m,n,Ng
Now F is a countable union of empty sets, and therefore is empty. Now for any € F\F we have

1

and so f,(z) is a Cauchy sequence in R. Now

1
@) < 1 fnl@) = fal@)] + [fal@)] < 3 + o))
Taking m — oo, we have
@] <3+ U@ < 1+ 1al@)loe o

Hence for each n we have |f| < 1 + || fn|loc almost everywhere so f € L. Therefore Lo is complete
0-

The £,(E) spaces are complete.

Proof: For 1 <p < oo, let f, be a Cauchy sequence on L,.
Ve >0 3ANe sit. || fon — fullp <eVn,m >N

Now let ny = N27% then the subsequence f,, , satisfies

1
ank+1 - fnk”P < 2714;
Define the function f by

f(x) = fn, + Z(fnk+1 — fn,) forxzekFE
k=1

Now the partial sums Sy (f) is just
SN() = far + Y (s = Fri) = Fun
k=N
Define the function g(x) by,

f(x):|fn1|+2|fnk+l_fnk| fOI'.’IJEE
k=1

Now by Minikowski’s inequality we have

N—-1 N—-1

1

IS8 @) lp < Worllp + 1 D2 i = Fallly < Wfmillo + D~ 55
k=1 k=1

So the increasing sequences of partial sums [|S,,(g)||, is bounded above by | f, || + 1. Hence we have

/gp<oo = /|f|p<oo = /fp<oo
E E E
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This implies that the series f,, converges almost everywhere. Now

N
Z fnk+1 - fn;€
k=1

Hence by the Lebesgue dominated convergence thoerem we have

|f = fan| = 15ec(f) = Sn1(f)] =

<y

dm = fu = [ Jim (F@) = £ =0

Hence f,, converges to f in £,(E). Now f, is itself Cauchy, hence f,, converges to f is in £,(E).

b
Exercise 4.9. Let g(xz) be measurable and suppose / f(@)g(x) dx is finite for any f(x) € La. Prove
that g(z) € Ls. ‘

b b
Proof: If f =1, then f € Lo([a,b]) so / gdz < oo which implies that g € L1[a,b]. Let F = / gdz,
a

then F is a bounded linear functional from L5([a,b]) to R. So there exists an M such that

b
IE()) = sup {/ fg}<M7 feL([o.1)

I £ll2=1
Then by the Reisz Representation Theorem g must be in £2([0,1]) 0.

Let F be a bounded linear functional on £, for 1 < p < oo.
Then there exists a function g € £, such that

F(h = | 19
We also have ||F|| = ||g]|4-

Proof: Just considering the finite dimensional case. Let p be of finite measure. Then every bounded
measurable function is in £,(u). Define a set function v on the measurable sets by v(E) = F(xg). If
E is the union of a sequence F, of disjoint measurable sets, define a sequence o, = sgn Fxg, and set

f = Z AnXE,

Then F' is bounded and we have

Z|V(En)|:F(f)<OO, ZV(EH):F(f):V(E)

Hence v is a signed measure, and by construction it is absolutely continuous with respect to p. By the
Radon-Nikodym Theorem, there is a measurable function g such that for each measurable set E we

have
v(E) = [ gdu
E

Since v is always finite implies that g integrable. Now if ¢ is a simple function, the linearity of F' and
of the integral imply that

F(¢)=/¢gdu

Since the left-hand side is bounded by | F||||¢|, we have g € £?. Now let G be the bounded linear
functional defined on £, by

G(f) =/fg dp
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Then G — F' is a bounded linear function which vanishes on the subspace of simple functions, which are
dense in £,. Hence we must have G — F' =0 in £,. So for all f € £,, we have

F(f)=/fgdu

and by construction ||F|| = |G| = |lgll; o-

Exercise 4.10. Let (X, M, u) be a measure space and let f be an extended real-valued M- measurable
function on X such that

/ |fIP dp < oo for p € (0,00).
X
Show that )\lim MNu{z:|f(z)| > A} =0

Proof: First define the set Ey = {x € X' : f(x) > A}. Now notice that E, C Ej if v > A, also because
[ € L, we have u(Ey) < A~1 if X is large enough, in particular pu(FEs) = 0. Now

Wala: f@ =3} = ¥ [ dn< [ it
E> E>
Hence we have

Jim Ve 7@ 2 A} < [ 17Pdu=0

oo

Since f € L,, then |f|? € £1(X), 1(Ex) = 0 and the integral of an Lebesgue integrable function over
a set of measure zero is zero 0.

5. SIGNED MEASURES

If (X, M) is a measure space, and if p, v are two measure defined on (X, M). p and v are
said to be mutually singular (uLlv), if there are disjoint stes A and B, in M such that X = AU B
and v(A) = u(B) = 0. A measure v is said to be absolutely continuous with respect to the measure p,
(v << p), if v(A) = 0 for each set A for which u(A) = 0.

Exercise 5.1. Let i be a measure and let A\, A1, A2 be signed measure on the measurable space (X, A).
Prove:

(a) If \Lp and A << p, then A =10

(b) If \y Ly and Ao Ly, then, if we set A = c1 A1 +code with c1,ca € R such that A is a signed measure,
thwn we have AL p.

(c) If My << p and Ao << p, then, if we set X\ = c1 A1 + cado with c1,co € R such that A is a signed
measure, thwn we have A << p.

Proof: For part (a), if v is a signed measure such that v 1y and v << p. There are disjoint measurable
sets A and B such that X = AU B and |v|(B) = |u|(A) = 0. Then |v(A)| = 0so [v|(X) = |[v|(A) +
|v|(B) = 0. Hence we have vt =v~ =01ie. v=0.

For part (b), there are disjoint measurable sets A; and B; such that X = A;UB; and u(B;) = v;(A;) =0,
for ¢ = 1, 2. Now X = (A1 n Az) U (Bl @] Bg) and (Al n AQ) n (Bl U BQ) = @ Now we have

(c1v1 + o) (A1 NAs) =u(B1UBy) =0 = (cav1+care)lu
For part (c), suppose 14 << p and vo << p. If u(E) =0, then v1(E) = vo(E) = 0. Hence

(i1 + o) (E)=0 = (v +cewm) <<p
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Exercise 5.2. Let p be a positive measure and v be a finite positive measure on a measurable space
(X, M). Show that if v << p, then for every € > 0 there is a 0 > 0, such that for every E C M with
w(E) < 6, we have v(E) < e.

Proof: Suppose not, Then there is an € > 0 such that for every § > 0, there is F5 C M, such that

1(Es) < 6, and v(Es) > e. In particular, for every n > 1, there is an E, such that u(E,) < -5 and

v(E,) > e. Now we have

Sou(E) =Y 1 < oo
n=1 n=1

Let E = limsup E,,, then u(E) = 0. Now since v << u, we have v(E) = 0. Now

v(E) =v(limsup F,,) > limsupv(E,) > €
But this implies that v(E,) > € > 0, and hence v(E) > 0, which is a contradiction. Therefore given
€ > 0 there is a § > 0, such that for every E C M with u(FE) < d, we have v(E) < € 0.

Let v be a signed measure on the measurable space (X, M).
Then there is a positive set A and a negative set B such that X = AUB and AN B = .

Let v be a signed measure on the measurable space (X, M).
Then there are two mutually singular measure v+ and v~ on (X, M) such that v = vT —v~. Moreover,
there is only one such pair of mutually singular measures.

Exercise 5.3. Suppose (X, M) is a measurable space, and Y is the set of all signed measure v on M
for which v(E) < oo, whenevery E C M. For vy, vy € Y, define

d(vy,v2) = sup |1 (E) — va(E)|
EeM
Show that d is a metric on 'Y and that Y equipped with d is a complete metric space.

Proof: Since v; are choosen such that v;(F) < oo, then for any 11,15 € Y and E € M, we have
|11 (E) —va(E)| < 0o. So we have d: Y XY — [0,00). Now to show d is a metric on Y we need to show
symmetry, positive definiteness and the triangle inequality. Clearly d(v1,v2) = d(ve,v1) by definition
of d. For the triangle inequality we have

d(p,v) = Sup, lW(E) —v(E)|
< sup (JW(E) —o(B)] + |u(E) - o(E)]}
EeM
< sup (W(E) —o(B)} + { sup [u(F) — o<F>|}
EeM FeM

d(p, o) + d(o,v)

Now to show definiteness, if y = v, then |u(E) — v(E)| = 0 for any E € M, and so d(u,v) = 0.
On the other hand if d(u,v) = 0, then we have |u(E) — v(E)| = 0. Let (A, B1), (A2, Ba) be Hahn
decompostions of u, and v respectively.

Case 1: If E C A1NAs, then p(E) = p™(E), and v(Y) = v (Y), hence |u(E)—v(E)| = |utT (E)—vT(E)|.
So we have u+ = vT on A N A,.

Case 2, 3: If E C A; N By, then we have pu(E) = —p~ (F) and v(E) = v+ (FE), hence
0= [u(B) — u(B)| = | - 5~ (B) — v*(B)| = p~ (E) + v (E)

Hence p~ = v+t =0on E C AiNBy. If E C A3N By, by the same proof we have the result u* = v~ =0
on EC Ao N B,
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Case 3: If E C By N By, then u(E) = —p~ (F) and v(E) = —v~ (E). So
0=[uE)—v(E)|=|-p (E)+v (E)
and so p~ =v~ =0on E C B; N B;y. So definiteness holds, therefore d is a metric on Y.

Now to show the metric space is complete. Let v, be a Cauchy sequence. Then for any € > 0, there is
an N such that if m,n > N, we have

sup ‘vn(E) - Um(E)l <e€
EeM

If particular, for a fixed set E, we have v, is a Cauchy sequence in R. Hence there exists some pu(E) € R,
such that v, — p. By the uniform boundedness pricipal we know that p is bounded, and hence

Vp — i in the metric d

The measure |v| is defined from the Jordan decomposition by, |v|(E) =vTE + v~ E.

let (X, M, pu) be a o-finite measure space, and let v be a measure
defined on M which is absolutely continuous with respect to p. Then there is a nonnegative measurable
function f such that for each set £ on M we have

WE=wa

The function f is unique in the sense that if ¢ is any measurable function with this property then g = f
almost everywhere.

Proof: Only the finite case is considered. Let p be finite then v — ap is a signed measure for each
rational number «. Let (A,, B,) be a Hahn decomposition for v — apu, and take Ag = X and By = 0.
Now B, ~ Bg = B, N Ag. So we have

(v —ap)(Ba ~Bg) <0 (v—pu)(Bs~Bg)>0

hence we must have y(B, ~ Bg) = 0. Now there exists a measurable function f such that for each
rational o we have f > a almost everywhere on A, and f < « almost everywhere on B,. Since By = 0
be an arbitrary set in M, and set

Ey = EN (Buy1)/n ~ Bi/n)

Then £ =U U FE, and this union is disjoint modulo null sets. Hence we have
k=1
V(E) =v(Ex) + Y _ v(E).
k=0
. k k+1
Since Ey C Br41)/n N Ag/n, we have N <f< N on Fy, and so
k k+1
Ey)— < duy < ——u(E
wEr) = Ekf p < 1l Er)
k k+1

Now since N,u(Ek) <v(Eg) < %M(EkL we have

1 1

v(Ey) — NN(Ek) < / f dp < v(Ey) + Nu(Ek).
Ey

) On E, we have f = oo almost everywhere. If u(Eo) > 0, we must have v(Eo) > 0, since (v—ap)(Eoo
is positive for each a. If u(Es) = 0, we have v(Es) = 0. Since v << p, for either case we have

U(Es) = / £ dp.

EOO

Hence we have
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Since p(F) is finite and N arbitrary, we must have v(E) = / f du.
E

The function f = [j—;} above is called the Radon-Nikodym derivative of v with respect to u.

Exercise 5.4. Suppose v and p are o-finite measures on a measurable space (X, A), such that v << p,

and v <<t —v. Prove that
u({xedeyzl}> =0.
dp

Proof: First notice that if E C X, such that (x — v)E = 0, then we have pu(F) = v(F). But we have
v << pr—v, hence if (u—v)E =0, then v(E) =0 = p(FE). Conversely if u(E) = v(E) and v << p—v,
then u(E) —v(E) = 0, and so v = 0 thus p(E) = 0. So if v(E) = u(E), then v(E) = u(E) = 0. Now

let £ = {x eX: d—" = 1} and consider v(E). By the Radon-Nikodym theorem we have

/ du—/—du
:/E%du:/E dp = p(E)

Hence,u(E):,u({xeX:Z—Zzl}):0|:|

but leTVL =1 on F, and so

Exercise 5.5. Let p and v be two measure on the same measurable space, such that u is o-finite and
v is absolutely continuous with respect to .

(a) If f is a nonngeative measurable function, show that

fro- ]

(b) If f is a measurable function, prove that f is integrable with respect to v, if and only if f {g—} 18
integralble with respect to p, and in this case, part (a) still holds.

Proof: For part (a), let E be a measurable set and let f = yg. Suppose that h = [j—ﬂ exists. Then

/fdz/:/XEdl/:V(E):/Ehdu:/hXEdu:/fhdu.

So the equality holds for charactersitc functions. Let f = ¢ be a simple function, then by the above we

have
/¢ dv = /cﬁh dp.

Now let f be a nonnegative measurable function. There there exists a monotone sequence of simple
functions ¢,, such that 0 < ¢,, < f and ¢,, — f almost everywhere. Applying the Monotone Covergence
theorem, we have

/fdz/fhm On V:Iim/gbnhdu:/fhdug.
For part (b), f is v-integrable if and only if [ f* dv — [ f~ dv is finite. Now by part (a) we have

/f+duz/f+hduand /f— du:/f‘hdu.

So we have f is v-integrable if and only if f is py-integrable .

Let (X, M, 1) be a o-finite measure space and v a o-finite
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measure defined on M. Then we can find a measure vy, singular with respect to ¢ and a measure v
absolutely continuous with respect to u, such that v = 1y 4+ ;. Furthermore, the measures vy and 1
are unique.

6. TOPOLOGICAL AND PRODUCT MEASURE SPACES

Exercise 6.1. Let L be a normed space. Then every weakly bounded set X is bounded.

Proof: Let ¢ : L — L**, by ¢(z)(f) = f(x), where x € L, f € L*. Now X* is a Banach space and
¢(X) is a family of bounded linear functionals on X*, and for each f € L* we have

sup{od(x)(f) :x € X} =sup{f(z) 12 € X} <
Then from the uniform boundness principle we have

sup{[|z|| : 2 € X} = sup{[|¢()[| : 2 € X} < o0

Therefore every weakly bounded nonempty set of a normed space is bounded .

Exercise 6.2. Suppose that A is a subset in R?. Define for each v € R?, p(x) = inf{|y — x| : y € A}.
Show that B, = {x : p(x) < r} is a closed set for each nonnegative r. Is the measure of By equal to the
outer measure of A?

Proof: Let z € (B,), and let € > 0. Then there is « € B, such that |z — z| < e. So we have
inf{|z —y|:y € A}

inf{|z — x|+ [z —y[: y € A}

e+ inf{|lz —y|:y € A}

€+

This is for all € > 0, therefore p(z) < r which implies z € B, thus B, is closed. Now By = A U 9A.
First by definition of p(x) we have for any x € A, p(z) = 0. Hence = € By, Now suppose that z € 0A,
then for any € > 0, there is a y € A such that |« — y| < e. Therefore we have

p(2)

IN A CIA

p(z)=inf{|lz—y|l:ye A} =0 =z € By,
and so A C By. Now suppose x € By. Then inf{|z —y| : y € A} = 0, so for every € > 0 thereisay € A
such that |z — y| < e. So o € A, therefore we have By = A = A° U9A. Now
e (A) < p*(Bo) = p"(A° U 0A) = p*(A%) + p* (0A) = p* (A) + p*(04)
Since A° is open and A is measurable. Therefore u*(A) = u(By), if and only if u*(0A) =0 .

Exercise 6.3. Prove that an algebraic basis in any infinite-dimensional Banach space must be uncount-
able.

Proof: Let V be an infinite-dimensional Banach space over F, and suppose {z,}nen is a countable
Hamel basis. Then v € V if any only if there exists a; € F such that

k
v = Z Q;T;
i=1
for some x; € {z,}. Now let (z;) denote the span of z;, then we have
V=J{za}io))

keN

But this implies that V is a countable union of proper subspace of finite dimension. Which implies
that V' would be of first category, since every finite dimensional proper subspace of a normed space is
nowhere dense. Which is a contradiction to the Baire Category Theorem. Therefore any basis for an
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infinite-dimensional Banach space must be uncountable

Let p be a real-valued function defined on the vector space X satisfying
p(z +y) < p(x)+p(y) and p(az) = ap(z) for each o > 0. Suppose that f is a linear functional defined
on a subspace S and that f(s) < p(s) for all s € S. Then there is a linear function F' defined on X
such that F(z) < p(z) for all z, and F(s) = f(s) for all s € S.

Exercise 6.4. Let v be a finite Borel measure on the real line, and set F(x) = v{(—oc,z]|}. Prove
that v is absolutely continuous with respect to the Lebesgue measure p if and only if F is an absolutely
continuous function. In this case show that its Radon-Nikodym derivative is the derivative of F', almost
everywhere.

Proof: (=) First suppose that v << p. Let u(E), then there exists an open set O, such that E C O
and p(0O) < e. Now O being open, there are disjoint intervals (zy, yx), such that

O=J@wuw), = wO)=> (y—ax)<e
k=1 k=1
Since v << p, there exists a delta such that if ©(O) < €, then v(O) < J. So we have
D O IF () = Flaw)| =Y viwr,y) <
k=1 k=1

So F(z) is an absolutely continuous function.

(<) Suppose that F(x) is absolutely continuous. Then we have

Ve>036>0st Y |ye—al <6 = Y |F(y)— Flax)| <e
k=1 k=1

Choose such disjoint intervals (zy,yx) and call the union of these intervals O, then we have u(O) < e.
Now by definition of F(x), we have

v(0) =Y |F(yx) — Flax)| <6
k=1
and so v << .

To see that F' is Radon-Nikodym derivative, we know that since F' is absolutely continuous we have
that F’(t) exists almost everywhere so

v(—oo,x] = F(x) = /ff F'(t) du(t)

— 00

e [ e [ [4]

v-ooal = F(a) = [ PO dutn= [ m au

We also have that

which implies that

d
Hence by the Radon-Nikodym theorem we know that F’ = Lly] almost everywhere.
i

Suppose (X x Y, 0(A X B), u X v) is the product space of two o-finite measure
spaces, and f : X x Y — [0,00] and f(z,y) be a nonnegative measurable function in the product
measure, then

Fi(z) = / f(z,-) dv is A measurable of z € X
Y
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Fy(y) = / f(-,y) dp is B measurable of x € Y
X

/Xxyfd(y)/XFldu/yFde/

i.e., the iterated integrals is equal to the the integral in the product space

/X(/yf(:c,y) du> d/z:/y(/xf(.,y) du> dV:/Xxyf(x’y) Ay x v).

Suppose(X x V,0(A x B), u x v) is the product space of two o-finite measure
spaces, and f: X x ) — [0,00] and f(z,y) be an integrable function in the product space, then

/X(/yf(a:,y) du) dMZ/y(/Xf(-,y) du) du:/Xny(x,y) (i x v).

Suppose (X x Y,0(A x B),u x v) is the product space of two o-finite
measure spaces. Let f be an extended real-valued o(A x B) measurable function on X’ x ). If either

(L) ansor [ ([ 1) av<os

then f is u x v-integrable, furthermore the iterated integrals are equal to the product integral.

and

Exercise 6.5. Let f be a real valued measurable function on the finite measure space (X, M, ). Prove
that the function F(x,y) = f(x) —5f(y) +4 is measurable in the product measure space (X x X, 0(M x
M), 1w x ), and that F is integrable if and only if f is integrable.

Proof: First since f(z) is measurable, we have both sections F(z¢,y), and F(z,yp) as measurable
for each fixed xg,yo. Now for x € X we have F(z,z) = —4(f(z) — 1), which is measurable. Having
F(z,y) being measurable on each section, and the diagonal is enough for F(z,y) to be measurable in
the product space.

Now let f be integrable, hence |f| is integrable, so let M = / |f(z)| dz, now we have
X

//UM—W@+MW@§ /M+W@MM+MWMy
X JX X

= Mu(X) +5Mp(X) + 4u(X)?
= () (M + (X)) < o0

by the same computation = / / |f(z) = 5f(y) + 4| dydr < oo
xJx

Then by Fubini-Tonelli theorem F'(z,y) is integrable. Now suppose that F'(x,y) is integrable, then by
Fubini’s theorem we have that the iterations are equal, but this is true if and only if f(z) is integrable

O-

Let X be a compacct space and A an algebra of continuous real-
valued functions on X that separates the points of X and contains the constant functions. Then given
any continuous real-valued function f on X and any € > 0 there is a function g € A such that for all
x € X we have |g(z) — f(z)| < e. In other words, A is a dense subset of C(X).

Let A be a linear transformation on a Banach space X to a Banach space
Y. Suppose that A has the property that, whenever z,, is a sequence in X that converges to some point
z and Az, converges in Y to a point y, then y = Ax. Then A is continuous.
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Exercise 6.6. Let (X, A, u) and (Y, B,v) be the measure spaces given by
X =Y =10,1]
e A=5B=0(0,1])

o/ be the Lebesgue measure on R, and v the counting measure.
Consider the product measure space (X x Y, 0(A x B)), and its subset E = {(z,y) € X x Y : x =y}

(1) Show that E C o(A x B)

(2) Show that [, [, xe dv du# [, [ x& du dv.
(8) Explain why Tonelli’s theorem is not applicable.

Proof: For (1) First notice that the following sets

Ay = {’Hk] y [k—17k}

n n n n

are measurable. Now let define F,, as follows

E, = O Aka
k=1

Then the sets F, are measurable as they are countable union of measurable sets. Then the set F is
given by

E=()En={(.y) eXxY:z=y)
n=1

is measurable since is a countable intersection of measurable sets.

For (2) by a direct computation we have

1 1
//XE‘ dydu:/ V(E)d,u:/ dp=1
xJy 0 0

1 1
//XEduduz/ u(E)dV:/ 0dv=0
yJx 0 0

Tonelli’s theorem is not applicable because the measure space (Y, B, v) is not o-finite .

and
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