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1. Measure Theory

Exercise 1.1. If A ⊂ R and ε > 0 show ∃ open sets O ⊂ R such that m∗(O) ≤ m∗(A) + ε.

Proof: Let {In} be a countable cover for A, then A ⊂
⋃
n=1

In. Since m∗(O) ≤ m∗(A) + ε. This implies

that

m∗(O)− ε ≤ m∗(A) where m∗(A) = inf
A⊂

⋃
In

{ ∞∑
n=1

l(In)

}
If l(Ik) = ∞ for some k then there is nothing to show, so suppose (an, bn) = In then l(In) < ∞,∀n.
Let On = (an + 2−nε, bn) then we have

l(On) = bn − an − 2−nε ≤ l(In)

⇒
∑

l(On) =
∑

bn − an −
∑

2−nε =
∑

bn − an − ε

⇒ m∗(
⋃
n

On)− ε ≤ m∗(A)

So let O =
⋃
n

On, then m∗(O)− ε ≤ m∗(A) ∴ ∃O ⊂ R st m∗(O) ≤ m∗(A) + ε �

Exercise 1.2. If A,B ⊂ R,m∗(A) = 0, then m∗(A ∪B) = m∗(B)

Proof: m∗(A ∪B) ≤ m∗(A) +m∗(B), and m∗(B) ≤ m∗(A ∪B), hence we have

m∗(B) ≤ m∗(A ∪B) ≤ m∗(A) +m∗(B) = m∗(B)
∴ m∗(A ∪B) = m∗(B) �

Exercise 1.3. Prove E ∈M iff ∀ε > 0,∃O ⊂ R open, such that E ⊂ O and m∗(O\E) < ε

Proof: (⇒) O\E = Ec ∩O implies that m∗(O\E) = m∗(Ec ∩O), but we have

m∗(O) = m∗(Ec ∩O) +m∗(E ∩O)

So suppose m∗(E) < ∞ ⇒ m∗(Ec ∩ O) = m∗(O)−m∗(E ∩ O). Let In be a countable cover for E, so
In = (an, bn). Let On = (an, bn + 2−nε) and let O =

⋃
On. Then

m∗(O) =
∑

l(On) =
∑

2−nε+ bn − an = ε+
∑

bn − an, and m∗(E ∩O) = m∗(E)

since E ⊂ O. So we have

m∗(E ∩O) = m∗(E) ≤
∑

l(In) =
∑

bn − an

⇒ m∗(E ∩O) ≤
∑

l(On)−
∑

l(In)

= ε+
∑

bn − an −
∑

bn − an = ε

∴ ∃O ⊂ R open, st E ⊂ O and m∗(O\E) ≤ ε

(⇐) Conversely, suppose ∀ε > 0,∃O ⊂ R, such that E ⊂ O and m∗(O\E) < ε and that O ∈M. Then

m∗(O) = m∗(Ec ∩O) +m∗(E ∩O), but m∗(Ec ∩O) = m∗(O\E) < ε

This implies that

m∗(O) = m∗(E ∩O) + ε ⇒ m∗(O) = m∗(E) + ε ∴ E ∈M �
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Exercise 1.4. Prove E ∈M iff ∀ε > 0 ∃F ⊂ R closed, such that F ⊂ E and m∗(E\F ) < ε

Proof: (⇒) E\F = F c ∩ E this implies that m∗(E\F ) = m∗(F c ∩ E), but we have

m∗(F ) = m∗(F c ∩ E) +m∗(E ∩ F )

So suppose m∗(E) < ∞ ⇒ m∗(F c ∩ E) = m∗(F ) − m∗(F ∩ E). Let In be a countable cover for E,
where In = (an, bn). Let Fn = [an, bn − 2−nε] and let F =

⋃
Fn. Then we have

m∗(F ) =
∑

l(Fn) =
∑

bn − an − 2−nε =
∑

bn − an − ε,

and m∗(E ∩ F ) = m∗(F ), since F ⊂ E. So

m∗(E ∩ F ) = m∗(F ) ≤
∑

l(In) =
∑

bn − an

⇒ m∗(E ∩ F ) ≤
∑

l(In)−
∑

l(Fn) =
∑

bn − an −
∑

bn − an + ε = ε

∴ ∃F ⊂ R Closed, st F ⊂ E and m∗(E\F ) ≤ ε

(⇐) Conversely, suppose ∀ε > 0,∃F ⊂ R, such that F ⊂ E and m∗(E\F ) < ε and that F ∈M. Then

m∗(E) = m∗(F c ∩ E) +m∗(E ∩ F ),

but m∗(F c ∩ E) = m∗(E\F ) < ε. This implies that

m∗(E) ≤ m∗(F ∩ E) + ε ⇒ m∗(E) ≤ m∗(F ) + ε ∴ E ∈M �

Vitali Let E be a set of finite outer measure and ð a collection of intervals that cover E in the sence
of Vitali. Then, given ε > 0 there is a finite disjoint collection {IN} of intervals in ð such that

µ∗

(
E\

N⋃
n=1

In

)
< ε

Exercise 1.5. Does there exists a Lebesgue measurable subset A of R such that for every interval (a, b)
we have µ(A ∩ (a, b)) = (b− a)/2?

Proof: First suppose that there is such a mesurable set A such that 0 6= µ(A∩ (a, b)) = α ≤ (b− a)/2.
Then there exsits an open set O such that A ⊂ O and µ(O\A) < ε, so let ε = α/2. Now O is open, so
there are disjoint intervals (xk, yk) such that O is a countable union of these intervals. So

O ∩ (a, b) =
∞⋃
k=1

[(xk, yk) ∩ (a, b)] =
⋃
l

(ckl , dkl).

Hence µ(O ∩ (a, b)) =
∑
l dkl − ckl , and we have

A ∩ O ∩ (a, b) = A ∩ (a, b) =
⋃
l

[A ∩ (ckl , dkl)]

Now
α = µ(A ∩ (a, b)) =

1
2

∑
l

(dkl − ckl)

but ∑
l

(dkl − ckl) = µ(O ∩ (a, b))

= µ((O\A) ∩ (a, b)) + µ(A ∩ (a, b))

≤ µ(O\A) +
1
2

∑
l

(dkl − ckl)

< ε+
1
2

∑
l

(dkl − ckl)

But this implies that

α/2 = ε ≤ 1
2

∑
l

(dkl − ckl) ≥ α
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So µ(A) = 0. which implies that µ(Ac) =∞. Now if there were to exsits such a set A we have µ(Ac) = 0,
and so

b− a = µ((a, b)) = µ(A ∩ (a, b)) + µ(Ac ∩ (a, b)) = µ(Ac ∩ (a, b)) =
1
2

(b− a)

So there cannot exist such a set �.

Exercise 1.6. Assume that E ⊂ [0, 1] is measurable and for any (a, b) ⊂ [0, 1] we have

µ(E ∩ [a, b]) ≥ 1
2

(b− a)

Show that µ(E) = 1.

Proof: By the previous problem, using the same proof, we know that µ(Ec) = 0. So the result is
shown.

Exercise 1.7. Let E1, . . . , En be measurable subsets of [0, 1]. Suppose almost every x ∈ [0, 1] belongs
to at least k of these subsets. Prove that atleast one of the E1, . . . , En has measure of at least k/n.

Proof: Suppose not, then for each i we have µ(Ei) < k/n. Define a function f(x) as follows.

f(x) =
n∑
i=1

χEi

where χEi denotes the characteristic function of Ei. Now since all most all x ∈ [0, 1] are in at least k
of the Ei we have f(x) ≥ k almost everywhere in [0, 1]. Now

k =
∫

[0,1]

k dx ≤
∫

[0,1]

f(x) dx =
n∑
i=1

∫
[0,1]

χEi dx =
n∑
i=1

µEi

But this implies that
n∑
i=1

µEi <

n∑
i=1

k

n
= k

Which is a contradiction, hence at least one Ei has µ(Ei) ≥ k
n �.

Exercise 1.8. Consider a measure space (X ,A, µ) and a sequences of measurable sets En, n ∈ N, such
that

∞∑
n=1

µ(En) <∞

Show that almost every x ∈ X is an element of at most finitely many E′ns.

Proof: It suffices to show that µ(x : x ∈ ∩Enk) = 0. So consider the following

lim
m→∞

µ

(
x : x ∈

m⋂
k=1

Enk

)
If we have shown the above limit is zero, then we’re done. To see this look at the following sum,

∞∑
N=1

µ

(
x : x ∈

N⋂
k=1

Enk

)
<

∞∑
n=1

µ(En) <∞

and hence

lim
m→∞

µ

(
x : x ∈

m⋂
k=1

Enk

)
= 0

Therefore almost every x ∈ X is an element of at most finitely many E′ns �.
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Exercise 1.9. Consider a measure space (X ,A, µ) with µ(X ) < ∞, and a sequences fn : X → R of
measurable functions such that lim

n→∞
fn(x) = f(x) for all x ∈ X . Show that for every ε > 0 there exists

a set E of measure µ(E) ≤ ε such that fn converges uniformly to f outside the set E.

Proof: This is Ergoroff’s theorem. See below.

Theorem (Egoroff’s) If fn is a sequence of measurable functions that converge to a real-valued
function f a.e. on a measurable set E of finite measure, then given η > 0, there is a subset A of E with
µ(A) < η such that fn converges to f uniformly on E\A

Proof: Let η > 0, then for each n, there exists a set An ⊂ E with µAn < η2−n, and there is an
Nn such that for all x /∈ An and k ≥ An we have |fk(x) − f(x)| < 1/n. Let A = ∪An, then by
construction A ⊂ E and µA < η. Choose n0 such that 1/n0 < η. Now if x /∈ A and k ≥ Nn0 then
|fk(x)− f(x)| < 1/n0 < η. Therefore fn converges uniformly on E\A.

Exercise 1.10. Let g be an absolutely continuous monotone function on [0, 1]. Prove that if E ⊂ [0, 1]
is a set of Lebesgue measure zero, then the set g(E) = {g(x) : x ∈ E} ⊂ R is also a set of Lebesgue
measure zero.

Proof: Let E ⊂ [0, 1] with zero measure, then for any epsilon ε > 0, there exists an open cover O for
E, such that µ(O\E) < ε. Now O being open in [0, 1] implies that O = ∪(an, bn), where (an, bn) are
disjoint. Now by absolutely continuity of g(x) we have

∀η > 0 ∃δ s.t.
∞∑
n=1

µ(In) < δ →
∞∑
n=1

|g(In ∩ [0, 1])| < η

Now g(E) ⊂ ∪|g(In ∩ [0, 1])| which implies that µ(g(E)) < η, so given an η there exists a δ > 0 such
that the above hold, then let δ = ε. Since η is arbitrary we have µ(g(E)) = 0 �

Remark: The above problem (1.10) is commonly refered to as Lusin’s N condition.

Exercise 1.11. Suppose f is Lipschitz continuous in [0, 1]. Show that
(a) µ(f(E)) = 0 if µ(E) = 0.

(b) If E is measurable, then f(E) is also measurable.

Proof: For part (a) if f is Lipschitz continuous then it is absolutely continuous, and so if µ(E) = 0,
then µ(f(E)) = 0 (see above proof).

For part (b) Let E be a measurable set and let ε > 0. Now there exists an open set O such that
µ(O\E) < ε, whereO is a disjoint union of intervals In = (an, bn). Now since f is absolutely continiuous,
it can be approximated by simple functions, namely χIn . Choose these functions such that∣∣∣∣∣f −

∞∑
n=1

cnχIn

∣∣∣∣∣ < ε

Now µ(χIn) = bn−an > 0, so it is measurable. Let α ∈ R, then the f(E) is measurable if {x : f(x) ≤ α}
is a measurable set for any α ∈ R. but we have now

{x : f(x) ≤ α} ⊂ {x : χIn + ε ≤ α}
We know simple functions are measurable, and our choice of simple functions approximates f(x),
therefore f is measurable �.

Theorem (Lusin’s) Let f be a measurable real-valued function on an interval [a, b]. Then given
δ > 0, there is a continuous function φ on [a, b] such that µ{x : f(x) 6= φ(x)} < δ
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Proof: Let f(x) be measurable on [a, b] and let δ > 0. For each n, there is a continuous function hn
on [a, b] such that

µ{x : |hn(x)− f(x)| ≥ δ2−n−2} < δ2−n−2

Denote these sets as En. Then by construction we have

|hn(x)− f(x)| < δ2−n−2, for x ∈ [a, b]\En
Let E = ∪En, then µE < δ/4 and {hn} is a sequence of continuous, thus measurable, functions that
converges to f on [a, b]\E. By Egoroff’s theorem, there is a subset A ⊂ [a, b]\E such that µA < δ/4 and
hn converges uniformly to f on [a, b]\(E∪A). Thus f is continuous on [a, b]\(E∪A) with µ(E∪A) < δ/2.
Now there is an open set O such that (E ∪ A) ⊂ O and µ(O\(E ∪ A)) < δ/2. Then we have f is con-
tinuous on [a, b]\O, which is closed. Hence there exists a φ that is continuous on (−∞,∞) such that
f = φ on [a, b]\O, where µ{x : f(x) 6= φ(x)} ≤ µ(O) < δ

Exercise 1.12. Prove the following statement. Supoose that F is a sub-σ-algebra of the Borel σ-algebra
on the real line. If f(x) and g(x) are F -measurable and if∫

A

f dx =
∫
A

g dx, ∀A ∈ F

Then f(x) = g(x) almost everywhere.

Proof: Let µ denote the Lebesgue measure on the Borel sets. Now since both f and g are F -measurable,
for any n ≥ 1, the sets

An = {x : f(x)− g(x) ≥ 1/n}, Bn = {x : g(x)− f(x) ≥ 1/n}
are both measurable and contained in F . Now we also have

A = {x : f(x)− g(x) > 0} =
∞⋂
n=1

An, B = {x : g(x)− f(x) > 0} =
∞⋂
n=1

Bn

contained in F since F is a σ-algebra. Now using the convenetion that ∞−∞ = 0, we have∫
A

f − g dx = 0

If µ(A) > 0 then as f − g > 0 implies by that
∫
A

f − g dx > 0, which is a contradiction. Hence we have

µ(A) = 0. By the same argument also have∫
B

g − f dx = 0 → µ(B) = 0.

Now A ∩B = ∅ and A ∪B is the set of points where f(x) 6= g(x), hence f = g almost everywhere �.

Exercise 1.13. Let E ⊂ R. Let E2 = {e2 : e ∈ E}

(a) Show that if µ∗(E) = 0, then µ∗(E2) = 0
(b) Suppose µ∗(E) <∞, it it true that µ∗(E2) <∞

Proof: For part (a) consider the intervales In = [n, n+1] for in Z. Now consider the function f(x) = x2.
If pn = ∪(ak, bk) is an open subset of In such that for δ < 0

µ(pn) < δ ⇒
n∑
k=1

|f(bk)− f(ak)| =
N∑
k=1

|b2k − a2
k| ≤ (2|n|+ 1)δ

Hence f(x) is absolutely continuous on In. Now a function is absolutely continuous on an interval I if
and only if the following are satisfies:

f is continuous on I
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f is of bounded variation on I
f satisfies Lusin’s (N) condition, or for every subset E of I such that µ(E) = 0, µ(f(E)) = 0.

Remark: The above condition for absolute continuity is the Banach-Zarecki Theorem.

Now define En = E ∩ In, then En ⊂ In and hence by Lusin’s (N) condition µ(f(En)) = 0. Now the set
f(En) is given by

f(En) = {e2 : e ∈ E ∩ In}

Now

E2 =
⋃
n∈Z
{e2 : e ∈ E ∩ In} =

⋃
n∈Z

f(En)

and so

µ∗(E2) ≤
∑
n∈Z

µ∗(En) =
∑
n∈Z

µ(En) = 0

For part (b), the statement is not always true. For each n ∈ N, let En = [n, n + n−3/2), then for each
µ(En) = n−3/2. Now if E = ∪En, then

µ(E) =
∞∑
n=1

µ(En) =
∞∑
n=1

1
n3/2

Now E2
n = [n2, n2 + 2n−1/2 + n−3), and so µ(E2

n) = 2n−1/2 + n−3 ≥ n−1/2. Also E2 = ∪E2
n, and the

sets E2
n are mutually disjoint. Hence

µ(E2) =
∞∑
n=1

µ(E2
n) ≤

∞∑
n=1

1
n1/2

=∞

Exercise 1.14. Suppose a measure µ is defined on a σ-algebra M of subset of X , and µ∗ is the
corresponding outer measure. Suppose A,B ⊂ X . Then A ∼ B if µ∗(A∆B) = 0. Prove that ∼ is an
equivalence relation.

Proof: For symmetry we have, by definition, A∆B = (A ∪ B)\(A ∩ B) = (B ∪ A)\(B ∩ A) = B∆A,
and so if µ∗(A∆B) = 0, then µ∗(B∆A) = 0. Hence A ∼ B if and only if B ∼ A.

For reflexivity, we have (A∆A) = A\A = ∅, hence A ∼ A.

For transitivity, let A,B,C ⊂ X . First notice, by element chasing, A∆C ⊂ (A∆B) ∪ (B∆C), and so
we have

0 ≤ µ∗(A∆B) = µ∗((A∆B) ∪ (B∆C)) ≤ µ∗(A∆B) + µ∗(B∆C)

Now if A ∼ B and B ∼ C, then µ∗(A∆B) = µ∗(B∆C) = 0, and so µ∗(A∆B) = 0, hence A ∼ C.
Therefore ∼ is an equivalence relation on X �.

Exercise 1.15. Let (X ,M, µ) be a measure space.

(a) Suppose µ(X ) < ∞. If f and fn are measurable functions with fn → f almost everywhere,

prove that there exists sets H,Ek ∈ M such that X = H ∪
∞⋃
k=1

Ek, where µ(H) = 0 and fn → f

uniformly on each Ek

(b) Is the result of (a) still true if (X ,M, µ) is σ-finte?

Proof: For part (a), since µ(X ) < ∞ and fn → f almost everywhere, by Egoroff’s theorem, for any
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k ∈ N, there is Hk ∈ M such that µ(Hk) < 1/k and fn → f uniformly on Ek = Hc
k. Now define

H = ∩∞k=1Hk, then H ⊂ Hk, and so 0 ≤ µ(H) ≤ 1/k for all k, hence µ(H) = 0. Now

∞⋃
k=1

Ek =
∞⋃
k=1

Hc
k =

( ∞⋂
k=1

Hk

)c
= Hc

and so

X = H ∪

( ∞⋃
k=1

Ek

)
where fk converges uniformly to f on any Ek �.

For part (b), the statement is true. Since X is σ-finite, we can write X as a disjoint union of finite sets,
i.e.

X =
∞⋃
n=1

Xn where µ(Xn) <∞ ∀n Xi ∩ Xj = ∅ for i 6= j

Now for each Xn apply part (a). Then we have

Xn = Hn ∪
∞⋃
k=1

Ek,n with µ(Hn) = 0

Let H = ∪∞n=1Hn, then µ(H) =
∞∑
n=1

µ(Hn) = 0. So we have

X =
∞⋃
n=1

Xn =
∞⋃
n=1

(
Hn ∪

( ∞⋃
k=1

Ek,n

))

=

( ∞⋃
n=1

Hn

)
∪

 ∞⋃
n,k=1

Ek


= H ∪

 ∞⋃
n,k=1

Ek,n


Now H has measure zero and {Ek,n}∞n,k=1 is a countable collection of open sets for which fn → f
uniformly �.

Exercise 1.16. Suppose fn is a sequence of measurable functions on [0, 1]. For x ∈ [0, 1] define
h(x) = #{n : fn(x) = 0} (the number of indicies n for which fn(x) = 0. Assuming that h < ∞
everywhere, prove that the function h is measurable.

Proof: First consider the measure space ([0, 1], σ[0, 1], µ), where µ is the Lebesgue measure. Since fn
is measurable for all n we know that the set {x : fn(x) = α} is measurable, for α ∈ R. In particular,
the set {x : fn(x) = 0} is measurable. Now we have

∞⋃
n=1

{x : fn(x) = 0}

is measurable with respect to µ, since it is the countable union of measurable sets. Now consider the
measure space (N, σ(N), ν) where ν is the counting measure. Now we know that

h(x) = {n : fn(x) = 0} <∞
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So consider the following:

{x : h(x) = α} =

{
x : #

∣∣∣∣∣⋃
n

fn(x) = 0

∣∣∣∣∣ = α

}

=

{
x :

∞∑
n=1

ν{n : fn(x) = 0} = α

}

⊂

{
x :

∞∑
n=1

ν{n : fn(x) = 0} <∞

}
⊂ [0, 1]

Hence the function h(x) is measurable �.

2. Lebesgue Integration

Exercise 2.1. Consider the Lebesgue measure space (R,M, µ). Let f be an extended real-valued M -
measurable function on R. For x ∈ R and r > 0 let Br(x) = {y ∈ R : |y − x| < r}. With r > 0 fixed,
define a function g on R by setting

g(x) =
∫
Br(x)

f(y)µ(dy) for x ∈ R

(a) Suppose f is locally µ-integrable on R. Show that g is a real-valued continuous function on R.

(b) Show that if f is µ-integrable on R then g is uniformly continuous on R.

Proof: If we show part (b), then part (a) follows by the same argument. Let x ∈ R. Now if f is
integrable on R2 so is |f |. Hence if ε > 0, there is δ > 0 such that if µ(A) < δ, then we have∫

A

|f | dy ≤ ε

2
.

Now as B(x, r) and B(y, r) are open balls with area πr2 with centers offset by |y − x|, we have that

µ(B(x, r)\B(y, r)) = µ(B(y, r)\B(x, r))→ 0 as y → x

Hence given δ > 0, there is an η > 0 such that if |y − x| < η, then

µ(B(x, r)\B(y, r)) = µ(B(y, r)\B(x, r)) < δ

So for |y − x| < η, we have

|g(x)− g(y)| ≤
∫
B(y,r)\B(x,r)

|f | dµ+
∫
B(x,r)\B(y,r)

|f | dµ < ε

2
+
ε

2
< ε.

That is, g(x) is uniformly continuous on R2
�.

Theorem (Jensen’s Inequality) If φ is a convex function on R and f an integrable function on
[0, 1]. ∫

φ(f(t)) dt ≥ φ
(∫

f(t) dt
)
.

Proof: Let

α =
∫
f(t) dt, y = m(x− α) + φ(a)

Then y is the equation of a supporting line at α. Now we have

φ(f(t)) ≥ m(f(t)− α) + φ(α) ⇒
∫
φ(f(t)) dt ≥ φ(α) dt �
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Theorem (Bounded Convergence) Let fn be a sequence of measurable functions defined on a set
E of finite measure, and suppose that there is a real number M such that |fn| ≤ M for all N and all
x. If f(x) = lim fn(x) pointwise in E, then∫

E

f = lim
∫
E

fn.

Proof: Let ε > 0, thn there is an N and a measurable set A ⊂ E with µA < ε
4M such that for all

n ≥ N and x ∈ E\A we have |fn(x)− f(x)| < ε
2µ(E) . Now,∣∣∣∣∫

E

fn −
∫
E

f

∣∣∣∣ =
∣∣∣∣∫
E

fn − f
∣∣∣∣

≤
∫
E

|fn − f |

=
∫
E\A
|fn − f |+

∫
A

|fn − f |

<
ε

2
+
ε

2
= ε

Therefore we have
∫
E

fn →
∫
E

f �.

Exercise 2.2. Suppose fn is a sequence of measurable functions such that fn converges to f almost
everywhere. If for each ε > 0, there is a C such that∫

|fn|>C
|fn| dx < ε.

Show that f is integrable on [0, 2]

Proof: First the interval [0, 2], is not important. The result can be shown for any finite interval. Fix
ε > 0, now if f is to be integrable, then so is |f |. Let C be such in the hypothesis, by Fatou’s lemma
we have ∫ 2

0

|f | dx ≤ lim inf
∫ 2

0

|fn| dx

= lim inf

(∫
[0,2]∩{|fn|>C}

|fn| dx+
∫

[0,2]∩{|fn|≤C}
|fn| dx

)
≤ ε+ Cµ(0, 2)

Therefore
∫ 2

0

|f | dx is bounded and hence f is integrable �.

Theorem (Fatou’s Lemma) If fn is a sequence of nonnegative measurable functions and fn(x) →
f(x) almost everywhere on a set E, then∫

E

f ≤ lim inf
∫
E

fn.

Proof: Since the integral over a set of measure zero is zero, (WLOG) we can assume that the converges
is everywhere. Let h be a bounded measurable fuction which is not greater that f and which vanishes
outside a set A ⊂ E of finite measure. Define a function hn, by

hn(x) = min{h(x), fn(x)}.

Then hn is bounded by the bound for h and vanishes outside A. Now hn → h pointwise in A, hence
we have by the bounded convergence theorem∫

E

h =
∫
A

h = lim
∫
A

hn ≤ lim inf
∫
E

fn.
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Taking supremum over h gives us the result �.

Theorem (Monotone Convergence) Let fn be an increasing sequence of nonnegative measurable
functions, and let f = lim f a.e. Then ∫

f = lim
∫
fn.

Proof: By Fatou’s lemma we have ∫
f ≤ lim inf

∫
E

fn.

Now for each n, since f is monotone, we have fn ≤ f , and so∫
n

f ≤
∫
E

f ⇒ lim sup
∫
n

f ≤
∫
E

f ⇒
∫
f lim

∫
fn �.

Remark: Let the positive part of f be denoted by f+(x) = max{f(x), 0}, and the negative part be de-
noted by f−(x) = max{−f(x), 0}. If f is measurable then so are f+ and f−. Futhermore f = f+− f−
and |f | = f+ + f−.

Exercise 2.3. Let f be a real-valued continuous function on [0,∞) such that the improper Riemann
integral

∫∞
0
f(x) dx converges. Is f Lebesgue integrable on [0,∞)?

Proof: f does not have to be Lebesgue integrable. Let n ≥ 0 and define a function fn as follows

fn(x) =


4

n+1x x ∈ [2n, 2n+ 1
2 ]

−4
n+1x x ∈ [2n+ 1

2 , 2n+ 3
2 ]

4
n+1x x ∈ [2n+ 3

2 , 2n+ 2]

Now fn is continuous on [0,∞) and when considering Riemann integration, we have∫ 2n+1

0

fn(x) dx =
1

n+ 1
and

∫ 2n+2

0

fn(x) dx = 0 ⇒
∫ ∞

0

fn dx = 0

for each fixed n. Now define

f(x) =
∞∑
n=0

fn(x)

Then since fn has disjoint support for any N ∈ N and 2N < y < 2N + 2, we have∫ y

0

f(x) dx =
∫ y

2N

f(x) dx,

and so the Riemann integral of f(x) converges to 0 on [0,∞). Now if a measurable function f is
Lebesgue integrablem then so is |f |. But,∫ ∞

0

|f | dx = 2
∞∑
n=1

1
n+ 1

=∞.

Therefore f is Riemann integrable but not Lebesgue integrable �.

Exercise 2.4. Consider the real valued function f(x, t), where x ∈ Rn and t ∈ I = (a, b). Suppose the
following hold.

(1) f(x, ·) is integrable over I for all x ∈ E
(2) There exists an integrable function g(t) on I such that |f(x, t)| ≤ g(t), ∀x ∈ E, t ∈ I.
(3) For some x0 ∈ E then function f(·, t) is continuous on I

Then the function F (x) =
∫
I

f(x, t) dt is continuous at x0

Proof: Let xn be any sequence in E such that xn → x0. Define a sequence of functions as fn(t) =
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f(xn, t). Then by hypothesis we have fn(t) ≤ g(t), for t ∈ I almost everywhere. Let f(t) = f(x0, t),
now since f(x, t) is continuous at x0, we have fn → f . So by the Lebesgue Dominated Convergence
theorem we have

lim
n→∞

∫
I

|fn(t)− f(t)| dt = 0

Hence we have

|F (xn)− F (x0)| =
∣∣∣∣∫
I

fn(t)− f(t) dt
∣∣∣∣ ≤ ∫

I

|fn(t)− f(t)| dt→ 0

Or F (x) is continuous at x0 �

Theorem (Lebesgue Dominated Convergence) Let g be integrable over E and let fn be a sequence
of measurable functions such that |fn| ≤ g on E and for almost all x ∈ E we have f(x) = lim fn(x).
Then ∫

E

f = lim
∫
E

fn.

Proof: Assuming the hypothesis, the function g − fn is nonnegative, so by Fatou’s lemma we have∫
E

(g − f) ≤ lim inf
∫
E

(g − fn)

Now since |f | ≤ g, f is integrable and we have∫
E

g −
∫
E

f ≤
∫
E

g − lim sup
∫
E

fn

Hence we have ∫
E

f ≥ lim sup
∫
E

fn

Considering g + fn, we have the result ∫
E

f ≤ lim inf
∫
E

fn

and so the result follows �.

Exercise 2.5. Show that the Lebesgue Dominated Convergence theorem holds if almost everywhere
convergence is replaced by convergence in measure.

Proof: Suppose that fn → f in measure, and there is an integrable function g such that fn ≤ g almost
everywhere. Now |fn − f | is integrable for each n, and |fn − f |χ[−k,k] converges to |fn − f |. By the
Lebesgue Dominated Convergence theorem we have∫ k

−k
|fn − f | →

∫
R
|fn − f |

Let ε > 0, then there exsits an N0 such that∫
|x|>N0

|fn − f | <
ε

3

also for each n, given ε > 0, there exists δ > 0 such that for any set A with µ(A) < δ we have∫
A

|fn − f | <
ε

3
Let A = {|fn − f | ≥ δ}. Then there exists an N1, such that for all n ≥ N1, we have A = {|fn − f | ≥
δ} < δ. Let N = max{N0, N1}∫

X
|fn − f | =

∫
|x|>N

|fn − f |+
∫

[−N,N ]∩A
|fn − f |+

∫
[−N,N ]∩Ac

|fn − f | <
ε

3
+
ε

3
+ 2Nδ < ε

Let δ =
ε

6N
, therefore we have

∫
X
|fn − f | → 0, as n→∞ �.
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Exercise 2.6. Show that an extended real valued integrable function is finite almost everywhere.

Proof: Consider the measur space (X ,M, µ). Let E = {x ∈ C : |f | =∞}. Now since f is integrable,
it is measurable hence the set E is measurable. Now suppose µ(E) > 0, then as |f | > 0 on E we have

∞ >

∫
X
|f | dµ ≥

∫
E

|f | dµ =∞

This contradicts to the integrability of f , thus µ(E) = 0. Therefore f is finite almost everywhere �.

Exercise 2.7. If fn is a sequence of measurable functions such that
∞∑
n=1

∫
|fn| <∞

Show that
∞∑
n=1

fn converges almost everywhere to an integrable function f and that

∫
f =

∞∑
n=1

∫
fn <∞

Proof: Define gN to be the partial sums of |fn|. Then gN is measurable since each fn, and hence |fn|
is measurable. Let g = lim gn, then g is measurable as it is the limit of measurable functions. Now∫

f =
∫ ∞∑

n=1

|fn| =
∞∑
n=1

∫
|fn| <∞

So g is integrable, and hence g is finite almost everywhere. Define f(x) as follows

f(x) =

{∑∞
n=1

∫
fn if |g(x)| <∞

0 otherwise

Then gN → f as N →∞ almost everywhere. We also have∣∣∣∣∫ f

∣∣∣∣ ≤ ∫
|f |

=
∫ ∣∣∣∣∣

∞∑
n=1

fn

∣∣∣∣∣
≤

∫ ∞∑
n=1

|fn|

=
∫
g <∞

We also have that

|gN | =

∣∣∣∣∣
N∑
n=1

fn

∣∣∣∣∣ ≤
N∑
n=1

|fn| ≤
∞∑
n=1

|fn| = g

almost everywhere. Now by the Lebesgue Dominated Convergence theorem, we have∫
f =

∫
lim gN = lim

∫
gN = lim

N∑
n=1

∫
fn =

∞∑
n=1

∫
fn �
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Exercise 2.8. Let (X ,M, µ) be a measure space, and let fn be a sequences of nonnegative extended
real-valued M-measurable functions on X . Suppose lim fn = f exists almost everywhere on X and
fn ≤ f almost everywhere. For n ∈ N, show that

∫
X
f dµ = lim

n→∞

∫
X
fn dµ

Proof: First if
∫
f dx =∞, applying Fatou’s lemma we have

∫
X

lim
n→∞

inf fn dµ ≤ lim
n→∞

inf
∫
X
fn dµ ≤ lim

n→∞

∫
X
fn dµ ≤ ∞.

And so lim
n→∞

∫
X
fn dµ =

∫
f dx =∞.

Now if
∫
f dx < ∞, since fn ≤ f almost everywhere, we have |fn| ≤ |f | almost everywhere, and we

have lim fn = f exists almost everywhere, we have by the Lebesgue Dominated Convergence theorem

∫
X
| |fn| − |f || dµ ≤

∫
X
|fn − f | dµ = 0 ⇒ lim

n→∞

∫
X
fn dµ =

∫
X
f dµ �

Exercise 2.9. Let f be a nonnegative Lebesgue measurable function on [0, 1]. Suppose f is bounded
above by 1 and

∫ 1

0
f dx = 1. Show that f = 1 almost everywhere on [0, 1]

Proof: let 1 > ε > 0 and define the set E as

E = {x ∈ [0, 1] : 0 ≤ f ≤ 1− ε}

Now we have

1 =
∫ 1

0

f dx =
∫
Ec
f dx+

∫
E

f dx

≤
∫
Ec
f dx+

∫
E

1− ε dx

≤ µ(Ec) + µ(E)− εµ(E)
= 1− εµ(E)

Hence since this holds for any ε ∈ (0, 1), we must have µ(E) = 0. Therefore f = 1 almost everywhere
on [0, 1] �.

Exercise 2.10. Let f be a real-valued Lebesgue measurable function on [0,∞) such that:

(1) f is locally integrable
(2) lim

x→∞
f = c

Show that lim
a→∞

1
a

∫ a

0

f dx = c.
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Proof: Let ε > 0, then there is an M > 0 such that if x > M , then |f(x)− c| < ε. Let a > M , now∣∣∣∣1a
∫ a

0

f dx− c
∣∣∣∣ =

1
a

∣∣∣∣∫ a

0

f − c dx
∣∣∣∣

≤ 1
a

∫ a

0

|f − c| dx

=
1
a

∫ M

0

|f − c| dx+
1
a

∫ a

M

|f − c| dx

<
1
a

∫ M

0

|f − c| dx+ ε
1
a

(a−M)

=
1
a

∫ M

0

|f − c| dx+ ε(1− M

a
)

Now since M is fixed, and by the integrability of f , we have∣∣∣∣1a
∫ a

0

f dx− c
∣∣∣∣ < ε

and since this is for any ε > 0 and all a > M , we have

lim
a→∞

∣∣∣∣1a
∫ a

0

f dx− c
∣∣∣∣ = 0 ⇔ lim

a→∞

1
a

∫ a

0

f dx = c �.

Exercise 2.11. Let f be a real-valued uniformly continuous function on [0,∞). Show that if f is
Lebesgue integrable on [0,∞), then lim

x→∞
f(x) = 0.

Proof: First if f is Lebesgue integrable, then so is |f |. Now decompose the integral as follows

∞ >

∫ ∞
0

|f(x)| dx =
∞∑
k=1

∫ k+1

k

|f(x)| dx, denote ak =
∫ k+1

k

|f(x)| dx.

Now ak > 0, and since the integral is convergent this implies that ak → 0 as k → ∞, which inturn
implies that ak is Cauchy. So we have

∀ε > 0, ∃N s.t.

∣∣∣∣∣
m∑
k=n

ak

∣∣∣∣∣ < ε, ∀n,m > N ⇒
∫ ∞
N+1

|f(x)| dx < ε

Since |f(x)| is positive and ε is arbitrary this implies that f(x)→ 0 as N →∞ �.

Exercise 2.12. Let f ∈ L1(R). With h > 0 fixed, define a function φh on R by setting

φh(x) =
1

2h

∫ x+h

x−h
f(t) µ(dt), for x ∈ R

(a) Show that φh is measurable on R.
(b) Show that φh ∈ L1(R) and ‖φh‖1 ≤ ‖f‖1.

For part (a) since f is integrable, then f is measurable. So the integral of a measurable function is
measurable, thus φh(x) is measurable.

For part (b) First apply the change of variable y = x− t, then we have∫ x+h

x−h
f(t) µ(dt) = −

∫ −h
h

f(x− y) µ(dy) =
∫ h

−h
f(x− y) µ(dy) =

∫ ∞
−∞

f(x− y)χ[−h,h](y) µ(dy)

Where χ[−h,h](y) is the charactistic function on [−h, h]. So we have

φh(x) =
1

2h
f ∗ χ[−h,h] ⇒ ‖φh(x)‖1 =

1
2h
‖fχ[−h,h]‖1 ≤

1
2h
‖f‖1‖χ[−h,h]‖1 = ‖f‖1 �.
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Exercise 2.13. Let f be a Lebesgue integrable function of the real line. Prove that

lim
n→∞

∫
R
f(x) sin(nx) dx = 0.

Proof: If f is intergrable, then there exists a sequences of step function φn such that

∀ε > 0 ∃N s.t.

∫
|f − φn| <

ε

2

Now we have∣∣∣∣∫
R
f(x) sin(nx) dx

∣∣∣∣ ≤ ∫
R
|f(x) sin(nx)| dx

≤
∫

R
|(f(x)− φn(x)) sin(nx)| dx+

∫
R
|φn(x) sin(nx)| dx

<
ε

2
+
∫

R
|φn(x) sin(nx)| dx

Now φn being a step function we have it as the sum of simple functions over disjoint interval In, where⋃∞
n=1 In = R, i.e.

φn =
∞∑
k=1

ak,nχIk,n

and so we have ∫
R
|φn(x) sin(nx)| dx = |ak,n|

∫
R

∣∣χIk,n sin(nx)
∣∣ dx

=
∞∑
k=1

|ak,n|
∫
Ik,n

|sin(nx)| dx→ 0 as n→∞

Hence for some N large enough and all n > N we have∣∣∣∣∫
R
f(x) sin(nx) dx

∣∣∣∣ < ε

2
+
∫

R
|φn(x) sin(nx)| < ε

2
+
ε

2
= ε �

3. Convergence

Exercise 3.1. Consider the Lebesgue measure space (R,M, µ) on R. Let f be a µ-integrable extended
real-valued M-measurable function on R. Show that

lim
h→0

∫
R
|f(x+ h)− f(x)| µ(dx) = 0.

Proof: First since f(x) is integrable, we have∫
R
f(x+ h) µ(dx) =

∫
R
f(x) µ(dx) ∀h ∈ R

Also since f is integrable, there exists a sequence of continuous function φn, such that∫
|f(x)− φn(x)| µ(dx) <

ε

3

Now |φn(x+ h)− φn(x)| < ε
3 if |h| < δ. Let N be large enough, then∫

|f−f(x+h)| µ(dx) ≤
∫
|f−φn(x)|+|φn(x+h)−f(x+h)|+|φn(x+h)−φn(x)|µ(dx) <

ε

3
+
ε

3
+
ε

3
= ε

Therefore we have

lim
h→0

∫
R
|f(x+ h)− f(x)| µ(dx) = 0 �.
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Exercise 3.2. Let (X ,M, µ) be a measure space. Let fn and f be an extended real-valued M- measur-
able fuctions on a set E ∈ X such that lim

n→∞
fn = f on E. Then for every α ∈ R we have

µ{E : f > α} ≤ lim
n→∞

inf µ{E : fn ≥ α} and µ{E : f < α} ≤ lim
n→∞

inf µ{E : fn ≤ α}

Proof: I will only show the first inequality since the proofs are identical. Let Aα = {x ∈ E : f(x) ≥ α},
Aα,n = {x ∈ E : fn(x) ≥ α} and let χA denote the characteristic function of A. First we need to show
χAn → χA in measure. Let ε > 0, denote the set Fα−ε,n by

Fα−ε,n = {x ∈ E : |χAα−ε,n − χAα−ε | ≥ ε}.

Now we want to show that the measure of this set is small. First notice that

F cα−ε,n ⊃ {x ∈ Aα : |f − fn| < ε}

Let x be in this subset, then this implies two thing. First if f(x) > α > α−ε, and fn(x) > f(x)−ε > α−ε.
So we must have

Fα−ε,n ⊂ {x ∈ Aα : |f − fn| ≤ ε}
Now since fn converges to f almost everywhere in E, it converges in measure, and hence the measure
of the set µ(Fα−ε,n) < ε. This implies that χAα,n converges to χAα in measure. Now Fatou’s lemma
holds for a sequence of functions converging in measure, so we have∫

E

χAα dµ ≤ lim inf
∫
E

χAα,n dµ ⇒ µ{E : f > α} ≤ lim
n→∞

inf µ{E : fn ≥ α} �

Exercise 3.3. Let g(x) be a real-valued function of bounded variation on an interval [a, b]. Suppose
that f is a real-valued decreasing function on [a, b]. Show that g(f(x)) is also of bounded variation. If
f is just a bounded continuous function is g(f(x)) still of bounded variation.

Proof: Since g is of bounded variation we have, let P be all the possible partitions of [a, b]

V ba (g) = sup
{xi}∈P

n∑
i=1

|g(xi)− g(xi−1)|

Now fix ε > 0 and pick an {xi} such that

V ba (g) <
N∑
i=1

|g(xi)− g(xi−1)|+ ε

Now since f is decreasing on we have that f(xi+1) < f(xi). Now call yi = fxi , {yi} ∪ {a, b} then is a
partition of [a, b], and so we have

N∑
i=1

|g(yi)− g(yi−1)| < sup
{xi}∈P

n∑
i=1

|g(xi)− g(xi−1)| = V ba (g)

This can be done for any partition of [a, b].Therefore g(f(x)) is also of bounded variation.

For the second part, no. Consider the function

f(x) =

{
x sin

(
1
x

)
x 6= 0

1 x = 0

and let g(x) = x. Now g(x) is a function of bounded variation on [−1, 1] and f(x) is a bounded and
continuous on [−1, 1], but g(f(x)) = f(x), which not a function of bounded variation on [−1, 1].

Exercise 3.4. Let (X ,M, µ) be a measure space. Let fn and f be an extended real-valued M- mea-
surable fuctions on a set E ∈ X with µ(E) <∞. Show that fn converges to 0 in measure on E if and

only if lim
n→∞

∫
E

|fn|
1 + |fn|

dµ = 0
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Proof: (⇒) If fn converges to 0 in measure then we have

µ{x ∈ E : |fn| ≥ ε} < ε.

Call this set Aε. Now ∫
E

|fn|
1 + |fn|

dµ =
∫
Aε

|fn|
1 + |fn|

dµ+
∫
Acε

|fn|
1 + |fn|

dµ

Now the function 1
1+x , x ≥ 0 is monotone, and uniformly continuous on any bounded interval. Now

µ(Aε) < ε, and so there is a δ such that So we have∫
Aε

|fn|
1 + |fn|

dµ+
∫
Acε

|fn|
1 + |fn|

dµ < µ(Aε) + µ(E)ε < ε(1 + µ(E))

Hence we have ∫
E

|fn|
1 + |fn|

dµ→ 0 as ε→ 0

(⇐) Now suppose that ∫
E

|fn|
1 + |fn|

dµ→ 0 as ε→ 0

and suppose that there exists and ε0 such that µ{x ∈ E : |fn| ≥ ε0} ≥ ε0. Then we have∫
Aε0

|fn|
1 + |fn|

dµ+
∫
Acε0

|fn|
1 + |fn|

dµ ≥ ε20
1 + ε20

+
∫
Acε0

|fn|
1 + |fn|

dµ

≥ ε20
1 + ε20

But this implies that
ε20

1 + ε20
≤
∫
Aε0

|fn|
1 + |fn|

dµ+
∫
Acε0

|fn|
1 + |fn|

< ε

let ε =
ε20

2(1 + ε20)
, then we have a contradiction �.

Exercise 3.5. Suppose µ(E) <∞ and fn converges to f in measure on E and gn converges to measure
on E. Prove that fngn converges to fg in measure on E.

Proof: Let hn = fngn and let h = fg. Now h and hn are measurable since fn and gn are. For each
δ > 0 define

An(δ) = {x : |hn(x)− h(x)| ≥ δ}
and let an(δ) = µ(An(δ)). Now because fn and gn converge in measure, for any subsequences fnk , gnk
there are subsequences fnkj and gnkj , such that both fnkj and gnkj converge almost everywhere to f
and g respectively. Hence we have hnkj = fnkj hnkj , which converges to h = fg almost everywhere
on E. Now since hnkj converges almost everywhere and µ(E) is finite we have that hnk converges in
measure. Now

lim
n→∞

|h− hn| ≤ lim
k→∞

sup
n
|h− hnk | → 0

Hence lim
n→∞

an(δ) = lim
k→∞

ank(δ) = 0, or hn converges in measure �.

(Convergence in measure) A sequences fn of measurable functions is said to converge to f in
measure if, given ε > 0, there is an N such that for all n ≥ N we have

µ{x : |f(x)− fn(x)| ≥ ε} ≤ ε
Remark: Let an be a sequence of real numbers. If there is an a ∈ R, such that for every subsequence
ank , there is a subsequences for which ankl → a, then an → a.
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Exercise 3.6. If fn, f ∈ L2 and fn → f almost everywhere, then ‖fn − f‖2 → 0 if and only if
‖fn‖2 → ‖f‖2.

Proof: (⇒) Suppose ‖fn − f‖2 → 0, now

‖fn − f‖22 =
∫
f2
n − 2ffn + f2

≥ ‖f‖22 − 2
∫
|fnf |+ ‖f‖22

Holder’s inequality ≥ ‖f‖22 − 2‖fn‖2‖f‖2 + ‖f‖22
= |‖f‖2 − ‖fn‖2|2

Therefore as ‖fn − f‖22 → 0 we have ‖fn‖2 → ‖f‖2.

(⇐) Now suppose ‖fn‖2 → ‖f‖2 and fn → f almost everywhere. Now for p ≥ 1, and for finite a,b, we
have

|a+ b|p ≤ 2p(|a|p + |b|p)
For each n, let

gn = 4(|fn|2 + |f |2)− |fn − f |2.
Now gn ≥ 0 almost everywhere. Since fn and f are finite almost everywhere, by Fatou’s lemma we
have ∫

lim inf gn ≤ lim inf
∫
gn

Now since fn → f almost everywhere we have lim inf gn = 8|f |2 almost everywhere. So we have

8‖f‖22 ≤ lim inf
∫
gn. Now

lim inf
∫
gn = 4 lim inf

∫
|fn|2 + 4 lim inf

∫
|f |2 = lim sup

∫
|fn − f |2

= 4 lim inf ‖fn‖22 + 4‖f‖22 − lim sup ‖fn − f‖22
= 8‖fn‖22 − lim sup ‖fn − f‖22

so we have 0 ≤ − lim sup ‖fn − f‖22, hence 0 ≤ lim sup ‖fn − f‖22 ≤ 0. Therefore we have

lim sup ‖fn − f‖2 = lim inf ‖fn − f‖2 = 0 ⇒ ‖fn − f‖2 → 0 �.

Remark: A sequences of functions fn converges in measure to f if and only if for every sequences fnk ,
there is a subsequence fnkj that converges almost everywhere to f .

Exercise 3.7. If fn ≥ 0 and fn(x)→ f(x), in measure then∫
f(x) dx ≤ lim inf

∫
fn(x) dx

Proof: Let fnk be any subsequence of fn. then there exists an fnkj such that fnkj converges to f

almost everywhere. By Fatou’s Lemma we have∫
f ≤ lim inf

∫
fnkj = lim

∫
fnk ≤ lim inf

∫
fn

Exercise 3.8. Suppose fn converges to two functions f and g in measure on D. Show that f = g
almost everywhere on D

Proof: Define the set E as E = {x ∈ D : |fn(x)− f(x)| > 0}. Then if En = {x ∈ D : |fn(x)− f(x)| ≥
1/m}, we have E = limEn. Now if for some n we have |fn(x)− f(x)| < 1

2m and |fn(x)− g(x)| < 1
2m ,

then we have

|f − g| ≤ |fn − f |+ |fn − g| <
1
m
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And so{
x : |fn(x)− f(x)| < 1

2m

}
∩
{
x : |fn(x)− g(x)| < 1

2m

}
⊂

{
x : |f(x)− g(x)| < 1

2m

}
which implies that{

x : |fn(x)− f(x)| ≥ 1
2m

}
∩
{
x : |fn(x)− g(x)| ≥ 1

2m

}
⊃

{
x : |f(x)− g(x)| ≥ 1

2m

}
This implies that µ

{
x : |f(x)− g(x)| ≥ 1

2m

}
<

2
m

. Now as n → ∞, we have 2
m → 0. Hence

µ {x : |f(x)− g(x)| > 0} = 0 �.

Exercise 3.9. Let fn → f in Lp(X ,M, µ), with 1 ≤ p < ∞, and let gn be a seqences of measurable
functions such that |gn| ≤ M <∞ for all n, and gn → g almost everywhere. Prove that gnfn → gf in
Lp(X ,M, µ)

Proof: Since fn → f in Lp, since Lp is complete we have f ∈ Lp. Also since |gn| ≤ M , for all n this
implies that |g| ≤M . Now

‖fngn − gnf‖pp =
∫

(fngn − gnf)p ≤Mp

∫
|fn − f |p → Mp‖fn − f‖pp

So we have ‖fngn − gnf‖p ≤M‖fn − f‖p, and so

‖fngn − gf‖p ≤M‖fn − f‖p → 0 as n→∞

Therefore gnfn → gf in Lp(X ,M, µ) �.

Exercise 3.10. Suppose f is differentiable everywhere on (a, b). Prove that f ′ is a Borel measurable
function on (a, b)

Proof: f ′ is Borel measurable if {x : f ′(x) ≤ α} is a Borel set. So

f ′(x) ≤ α ⇔ lim
n→∞

n

(
f

(
x+

1
n

)
− f(x)

)
≤ α

⇔ lim
n→∞

(
f

(
x+

1
n

)
− f(x)

)
− α

n
≤ 0

for all but finitely many n ⇔
(
f

(
x+

1
n

)
− f(x)

)
− α

n
≤ 1
m
∀m

⇔ x ∈ lim inf
{
x : f

(
x+

1
n

)
− f(x)− α

n
≤ 1
m

}
∀m

⇔ x ∈
⋃
n≥1

⋂
k≥n

{
x : f

(
x+

1
k

)
− f(x)− α

k
≤ 1
m

}
∀m

⇔ x ∈
⋂
m≥1

⋃
n≥1

⋂
k≥n

{
x : f

(
x+

1
k

)
− f(x)− α

k
≤ 1
m

}

Now since f(x) is differentiable almost everywhere, it is continuous almost everywhere and so the f(x),
and f(x+ 1\k) are measurable. Any linear combination of them is measurable, and so the set{

x : f
(
x+

1
k

)
− f(x)− α

k
≤ 1
m

}
is measurable. Now the collection of all such sets form a σ-algebra, and hence the countable union and
intersection of these sets are measurable. Therefore f ′(x) is measurable �.
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Exercise 3.11. Let cn,i be an array of nonnegative exteneded real numbers for n, i ∈ N.

(a) Show that
lim
n→∞

inf
∑
i∈N

cn,i ≥
∑
i∈N

lim
n→∞

inf cn,i

(b) If cn,i is an increasing sequences for each i ∈ N then

lim
n→∞

∑
i∈N

cn,i =
∑
i∈N

lim
n→∞

cn,i

Proof: For part (a) first let ν denote the counting measure. Now if M = P(N), then (N,M, ν)
forms a measure space. Now let an be sequences with cn ∈ [0,∞]. Then the function a(n) = an is
M-measurable, and so ∫

n∈N
c dν =

∑
n∈N

cn

Then by Fatou’s lemma we have∫
N

lim
n→∞

inf cn ≤ lim
n→∞

inf
∫

N
cn ⇒

∑
i∈N

lim
n→∞

inf cn,i ≤ lim
n→∞

inf
∑
i∈N

cn,i �

For part (b) using the same measure space (N,M, ν), we know that cn(i) ≤ cn(i+1), so by the Monotone
convergence theorem we have∫

N
lim
n→∞

cn = lim
n→∞

∫
N
cn ⇒

∑
i∈N

lim
n→∞

cn,i ≤ lim
n→∞

∑
i∈N

cn,i �

Theorem (Ascoli-Arzela) Let F be an equicontinuous family of functions from a separable space
X to a metric space Y . Let fn be a sequence in F such that for each x ∈ X the closure of the set
{fn(x) : 0 ≤ n < ∞} is compact. Then there is a subsequence fnk that converges pointwise to a
continuous function f , and the convergence is uniform on each compact subset X.

Exercise 3.12. Let {qk} be all the rational numbers in [0, 1]. Show that
∞∑
k=1

1
k2

1√
|x− qk|

converges a.e. in [0, 1]

Proof: Fix ε0 > 0, consider the two sets

E1 =
1√
|x− qk|

≤ 1
ε0

and E2 =
1√
|x− qk|

>
1
ε0

Now for each fixed x ∈ [0, 1]\Q we can enumerate the rationals however we want (Zorn’s Lemma).
Choose such an ordering so that

x ∈ E2 → 1√
|x− qk|

< k1−ε0

That is the closer qk gets to x, the large the index. Now let ν be the counting measure, then we have
∞∑
k=1

1
k2

1√
|x− qk|

=
∫
E1

1
k2

1√
|x− qk|

dν +
∫
E2

1
k2

1√
|x− qk|

dν

<

∫
E1

1
k2

1
ε0

+
∫
E2

1
k1+ε0

dν

<

∫
N

1
k2

1
ε0

+
∫

N

1
k1+ε0

dν <∞

This can be done for all x ∈ [0, 1]\Q. Therefore the series converges almost everywhere in [0, 1] �.
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Exercise 3.13. Let (X ,M, µ) be a finite measure space. Let fn be an arbitrary sequence of real-valued
measurable functions on X . Show that for every ε > 0 there exists E ⊂M with µ(E) < ε and a sequence
of positive real numbers an such that anfn → 0 for x ∈ X\E

Proof: First denote the set Em = {x : m− 1 ≤ |fn| < m}, then the sets Em are disjoint and cover X .
Now define α as such

∞∑
k=1

1
k2

= α

Since µ(X ) <∞, if ε > 0, there is an Mn such that
ε

αn2
>

∑
m≥Mn

µ(En) = µ{x : |fn| ≥Mn}

Now choose these Mn such that Mn > Mn−1 for all n. Define the sets Fn = {x : |fn| ≥ Mn}, then we
have µ(Fn) < ε

αn2 . Now if E = ∪En, then

µ(E) ≤
∞∑
n=1

µ(En) <
ε

α

∞∑
n=1

1
n2

= ε

Let an = 1/M3
n, then if x ∈ X\E, then we have

an|fn(x)| < 1
M3
n

Mn =
1
M2
n

∀n

And so we have ∣∣∣∣∣
∞∑
n=1

anfn(x)

∣∣∣∣∣ ≤
∞∑
n=1

|anfn(x)| ≤
∞∑
n=1

1
M2
n

≤
∞∑
n=1

1
n2

<∞

Therefore we must have anfn(x)→ 0 on X\E �.

Exercise 3.14. Prove that the gamma function

Γ(x) =
∫ ∞

0

tx−1e−t

is well defined and continuous for x > 0

Proof: Let let f(t, x) = tx+1e−t, and x > 0 and decompose the integral into two integrals (0, 1] and
(1,∞). For the first we have ∫ 1

0

tx−1e−t dt ≤
∫ 1

0

tx−1 dt =
tx

x

∣∣x
0
<∞

Now f(t, x) is continuous on (1,∞), and also t2f(t, x) → 0 as t → ∞, so there is an M such that M
bounds t2f(t, x) on (1,∞). Now∫ ∞

1

tx−1e−t dt =
∫ 1

0

tx+1e−tt−2 dt = M

∫ ∞
0

1
t2
dt = M

And so Γ(x) is well defined on (0,∞).

To show continuity, let xn, be a cauchy sequence, and define fn(t) = f(t, xn). Now by continuity of
f(t, x) on (0,∞) × (0,∞), we have that for each x, fn → f on t ∈ (0,∞). now f(t, x) is bounded on
(1,∞), call this bound M > 1. Define a function g(t) by

g(t) =

{
tx−1 0 < t ≤ 1
tMe−t 1 < t ≤ ∞

Now fn, f ≤ g on (0,∞), so by the Lebesgue Dominated Convergence theorem we have∫ ∞
0

|fn − f | → 0 as n→∞
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and so we have

|Γ(xn)− Γ(x)| =
∣∣∣∣∫ ∞

0

fn(t)− f(t, x) dt
∣∣∣∣ ≤ ∫ ∞

0

fn(t)− f(t, x)| dt→ 0 as n→∞

This holds for any sequence such that xn → x ∈ (0,∞), therefore Γ(x) is continuous on (0,∞) �.

4. Lp spaces

Exercise 4.1. Let 1 ≤ p < q <∞. Which of the following statements are true and which are false?

(a) Lp(R) ⊂ Lq(R)
(b) Lq(R) ⊂ Lp(R)
(c) Lp([2, 5]) ⊂ Lq([2, 5])
(d) Lq([2, 5]) ⊂ Lp([2, 5])

Proof: Only part (d) is true. This can easily be shown for any finite interval, let I = [a, b] Let
f ∈ Lq(I). Then |f |p ∈ Lq/p(I). Now by Holder’s inequality we have∫

I

|f |p =≤ ‖|f |p‖q/p ‖1‖r

where r is conjugate to q
p . Now

‖f‖pp ≤ ‖|f |p‖q/p ‖1‖r =
(∫

I

(|f |p)q/p
)p/q

µ(I)
q−p
q = ‖f‖pqµ(I)

q−p
q

Hence we have ‖f‖p ≤ ‖f‖qµ(I)
q−p
qp , therefore f ∈ Lp(I) �.

For a counterexample to part (c) consider the function f(x) = (x − 2)−1/2, and let p = 1 and q = 2,
then f ∈ Lp([2, 5]), but f /∈ Lq([2, 5]).

For a counterexample to part (b) consider the function f(x) = (1 + x2)−1/2, and let p = 1, q = 2, then
f ∈ Lq(R) but f /∈ Lp(R).

For a counterexample to part (a) consider the counterexample to part (c) with the zero extension.

Theorem (Holder Inequality) If p and q are nonnegative extended real numbers such that

1
p

+
1
q

= 1

and if f ∈ Lp and g ∈ Lq then fg ∈ L1 and∫
|fg| ≤ ‖f‖p‖g‖q

Proof: Assume 1 < p <∞, and suppose that f , g ≥ 0. Let h = gq−1, then g = hp−1. Now

ptf(x)g(x) = ptf(x)hp−1 ≤ (h(x) + tf(x))p − h(x)p

so we have

pt

∫
fg ≤

∫
|h+ tf |p −

∫
hp = ‖h+ tf‖pp − ‖h‖pp

and we also have

pt

∫
fg ≤ ‖h‖pp + ‖tf‖pp − ‖h‖pp

now differentiating bothsides with respect to t at t = 0 , we have

p

∫
fg ≤ p‖f‖p‖h‖p−1

p = p‖f‖p‖g‖q �.
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Exercise 4.2. Let f ∈ L3/2([0, 5]). Prove that

lim
t→0+

1
t1/3

∫ t

0

f(s) ds = 0.

Proof: Applying Holders inequality we have∣∣∣∣ 1
t1/3

∫ t

0

f(s) ds
∣∣∣∣ ≤ 1

t1/3

∫ t

0

|f(s)| ds

≤ 1
t1/3

(∫ t

0

|f(s)| ds
)2/3(∫ t

0

ds

)1/3

≤ 1
t1/3
‖f(s)‖3/2t1/3

≤
(∫ t

0

|f(s)|3/2 ds
)2/3

→ 0 as t→ 0 + �

Exercise 4.3. Suppose f ∈ C1[0, 1], f(0) = f(1), and f > f ′ everywhere.
(1) Prove that f > 0 everywhere.
(2) Prove that ∫ 1

0

f2

f − f ′
dµ ≥

∫ 1

0

f dµ

Proof: For (1), if f(x) = α ∈ R+ then everything holds. So suppose that, there exists an c ∈ (a, b) ⊂
(0, 1) such that f ′(c) = 0. (WLOG) suppose that this c is not a saddle point for f(x), also suppose that
f(c) < 0. Now if there is a δ > 0 such that f(c) > f(x), for all x ∈ B(c, δ), then we have f ′(x) > 0 for
x ∈ (c− δ, c). This implies that f ′(x) > f(x) for x ∈ (c− δ, c). If there is a δ > 0 such that f(c) < f(x),
for all x ∈ B(c, δ), then we have f ′(x) > 0 for x ∈ (c, c + δ), which implies that f ′(x) > f(x) for
x ∈ (c, c + δ). For both cases we have a contradiction. Therefore f(x) > 0 for all x ∈ (0, 1). Now if
f(0) = 0, f cannot be constant since 0 6≥ 0. this implies that, for some δ > 0, f ′(x) > 0 for x ∈ [0, δ),
which is a contradiction. Therefore f(x) > 0 for all x ∈ [0, 1].

For (2) since f > f ′ we have that
√
f − f ′ is well defined on [0, 1]. So,

(∫ 1

0

f

)2

dµ =
(∫ 1

0

f√
f − f ′

√
f − f ′ dµ

)2

Hölder’s inequality ≤
∫ 1

0

f2

f − f ′
dµ

∫ 1

0

f − f ′ dµ

≤
∫ 1

0

f2

f − f ′
dµ

∫ 1

0

f dµ

The last line holds since f − f ′ > 0. This implies that:∫ 1

0

f dµ ≤
∫ 1

0

f2

f − f ′
dµ �

Exercise 4.4. If f(x) ∈ Lp ∩ L∞ for some p <∞. Show that

(a) f(x) ∈ Lq for q > p.
(b) limq→∞ ‖f‖q = ‖f‖∞.

Proof: For part (a) Let 0 < p < q <∞ and let f ∈ Lp ∩ L∞. Then if α = q
p and if β = q

q−p , then we
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have 1
α + 1

β = 1. Now applying Holder’s inequality we have

‖f‖qq =
∫
|f |q

=
∫
|f |q(

1
α+ 1

β )

=
∫
|f |p|f |q−p

=
∫
|f |p|f |q−p

≤ ‖|f |p‖1‖|f |q−p‖∞
Now since |f | ≤ ‖f‖∞ almost everywhere and q−p > 0 we have |f |q−p ≤ ‖|f |q−p‖∞ almost everywhere,
and so ‖|f |q−p‖∞ < ∞. Also since f is monotone increasing, we have ‖|f |q−p‖∞ = ‖f‖q−p∞ . We also
have ‖|f |p‖1 = ‖f‖pp <∞. Therefore f ∈ Lq �.

For part (b), first suppose that ‖f‖∞ = 0. This implies that f = 0 almost everywhere and hence
‖f‖q = 0 for all q. Hence limq ‖f‖q → ‖f‖∞ trivially.

Now suppose that f ∈ Lp ∩ L∞ and ‖f‖ 6= 0. From part (a) we have

‖f‖q ≤
(
‖f‖pp

)1/q (‖f‖∞)1−
p
q

Now let ε > 0, then on a set E of nonzero measure, |f | > ‖f‖∞ − ε. If µ(E) =∞, shoose a subset of E
with finite measure. Then we have

‖f‖qq =
∫
E

|f |qdµ

≥
∫
E

(‖f‖∞ − ε)q dµ

= µ(E)|‖f‖∞ − ε|q.
Now this is for all q > p. Let qn be a sequence of numbers greater than p that converges to ∞. Then

lim
n→∞

µ(E)
1
qn |‖f‖ − ε| ≤ lim

n→∞
inf ‖f‖qn

≤ lim
n→∞

sup ‖f‖qn

≤ lim
n→∞

sup
(
‖f‖pp

) 1
qn (‖f‖∞)1−

p
qn

and so
|‖f‖∞ − ε| ≤ lim

n→∞
inf ‖f‖qn ≤ lim

n→∞
sup ‖f‖qn ≤ ‖f‖∞

Since this holds for all ε > 0 we have limn→∞ ‖f‖qn = ‖f‖∞. Now since this is for any sequence qn, we
have limq→∞ ‖f‖q = ‖f‖∞.

Exercise 4.5. Suppose that f ∈ Lp([0, 1]) for some p > 2. Prove that g(x) = f(x2) ∈ L1([0, 1])

Proof: f ∈ Lp([0, 1]) implies that ‖f‖p < ∞. In particular this implies that ‖g‖p = ‖f(x2)‖p < ∞.
Now ∫ 1

0

|g(x)| dx =
∫ 1

0

|f(x2)| dx

change of variables (y = x2) =
∫ 1

0

|f(y)
1

2
√
y
| dy

hölder’s inequality ≤ 1
2
‖f‖p

∥∥∥∥ 1
√
y

∥∥∥∥
p
p−1
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Now f ∈ Lp([0, 1]) and since p > 2 we have
∥∥∥ 1√

y

∥∥∥
p
p−1

<∞, therefore g(x) ∈ L1([0, 1]) �.

Exercise 4.6. Let f ∈ Lp(X ) ∩ Lq(X ) with 1 ≤ p < q <∞. Prove that f ∈ Lr(X ) for all p ≤ r ≤ q.

Proof: Let E1 = {x : 0 ≤ |f(x)| ≤ 1}, and E2 = {x : 1 > |f(x)|}, then E1, E2 are a Hahn
decomposition for X . Now suppose f ∈ Lp ∩ Lq. Now

‖f‖rr =
∫
E1

|f |r +
∫
E2

|f |r

≤
∫
E1

|f |p +
∫
E2

|f |q

≤
∫
X
|f |p +

∫
X
|f |q

= ‖f‖pp + ‖f‖qq ∴ f ∈ Lr(X )

Exercise 4.7. Suppose f and g are real-valued µ-measurable functions on R, such that
(1) f is µ-integrable.
(2) g ∈ C0(R).

For c > 0 define gc(t) = g(ct). Prove that:

(a) lim
c→∞

∫
R
fgc dµ = 0,

(b) lim
c→0

∫
R
fgc dµ = g(0)

∫
R
f dµ.

Proof: For part (a) define hn(x) = f(x)gn(x). Now since f ∈ L1(R) we know that f(x) <∞ a.e., and
since g ∈ C0(R) we know that

gn(x)→ 0 as n→∞.
For a fixed x such that f(x) <∞ we have

hn(x)→ 0 as n→∞
Hence hn → 0a.e.. Also since g ∈ C0(R) we have that there is some M such that |g(x)| < M . So we
have ∣∣∣∣∫

R
hn(x) dµ

∣∣∣∣ ≤ ∫
R
|f(x)gn(x)| dµ ≤M

∫
R
|f(x)| dµ <∞

since f ∈ L1(R). Hence by the Lebesgue Dominated Convergence theorem we have

lim
n→∞

∫
R
fgn dµ = lim

n→∞

∫
R
hn dµ =

∫
R

lim
n→∞

hn dµ = 0

Proof: For part (b) we know that for all n > 0, fgn ∈ L1(R). Define hn(x) = |f(x)g(xn−1)|, again
since g ∈ C0(R) we have that there is some M such that |g(x)| < M . So∣∣∣∣∫

R
hn(x) dµ

∣∣∣∣ ≤ ∫
R
|f(x)gn(x)| dµ ≤M

∫
R
|f(x)| dµ <∞

Hence by the Lebesgue Dominated Convergence theorem we have

lim
n→∞

∫
R
fg1/n dµ = lim

n→∞

∫
R
hn dµ

=
∫

R
lim
n→∞

hn dµ

=
∫

R
lim
n→∞

fg1/n dµ

= g(0)
∫

R
f dµ
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Exercise 4.8. Let E be a measurable subset of the real line. Prove that L∞(E) is complete.

Proof: Let fn be a Cauchy sequence of measurable functions in L∞. Then there exists and k ∈ N such
that if m,n ≥ Nk, then

‖fn − fm‖∞ <
1
k
, ∀n,m > Nk → |fn − fm| <

1
k
a.e.

Now define the sets En,m,k by

En,m,k =
{
x ∈ E : |fn(x)− fm(x)| ≥ 1

k

}
then for each n,m > Nk, the set En,m,k is empty. Let F be defined by

F =
⋃

k≥m,n,Nk

En,m,k

Now F is a countable union of empty sets, and therefore is empty. Now for any x ∈ E\F we have

|fn(x)− fm(x)| < 1
k

and so fn(x) is a Cauchy sequence in R. Now

|fm(x)| ≤ |fm(x)− fn(x)|+ |fn(x)| < 1
k

+ |fn(x)|.

Taking m→∞, we have

|f(x)| ≤ 1
k

+ |fn(x)| < 1
k

+ ‖fn(x)‖∞ a.e.

Hence for each n we have |f | ≤ 1
k + ‖fn‖∞ almost everywhere so f ∈ L∞. Therefore L∞ is complete

�.

Theorem (Riesz-Fischer) The Lp(E) spaces are complete.

Proof: For 1 ≤ p <∞, let fn be a Cauchy sequence on Lp.
∀ε > 0 ∃Nε s.t. ‖fm − fn‖p < ε ∀n,m > N

Now let nk = N2−k, then the subsequence fnk , satisfies

‖fnk+1 − fnk‖p <
1
2k

Define the function f by

f(x) = fn1 +
∞∑
k=1

(fnk+1 − fnk) for x ∈ E

Now the partial sums SN (f) is just

SN (f) = fn1 +
∞∑
k=N

(fnk+1 − fnk) = fnN

Define the function g(x) by,

f(x) = |fn1 |+
∞∑
k=1

|fnk+1 − fnk | for x ∈ E

Now by Minikowski’s inequality we have

‖SN (g)‖p ≤ ‖fn1‖p + ‖
N−1∑
k=1

|fnk+1 − fnk |‖p ≤ ‖fn1‖p +
N−1∑
k=1

1
2k

So the increasing sequences of partial sums ‖Sn(g)‖p is bounded above by ‖fn1‖+ 1. Hence we have∫
E

gp <∞ ⇒
∫
E

|f |p <∞ ⇒
∫
E

fp <∞
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This implies that the series fnk converges almost everywhere. Now

|f − fnN | = |S∞(f)− SN−1(f)| =

∣∣∣∣∣
N∑
k=1

fnk+1 − fnk

∣∣∣∣∣ ≤ g
Hence by the Lebesgue dominated convergence thoerem we have

lim
k→∞

‖f − fnk‖pp =
∫
E

lim
k→∞

(f(x)− fnk)p = 0

Hence fnk converges to f in Lp(E). Now fn is itself Cauchy, hence fn converges to f is in Lp(E).

Exercise 4.9. Let g(x) be measurable and suppose
∫ b

a

f(x)g(x) dx is finite for any f(x) ∈ L2. Prove

that g(x) ∈ L2.

Proof: If f = 1, then f ∈ L2([a, b]) so
∫ b

a

gdx < ∞ which implies that g ∈ L1[a, b]. Let F =
∫ b

a

gdx,

then F is a bounded linear functional from L2([a, b]) to R. So there exists an M such that

‖F (f)‖ = sup
‖f‖2=1

{∫ b

a

fg

}
< M, f ∈ L2([0, 1])

Then by the Reisz Representation Theorem g must be in L2([0, 1]) �.

Theorem (Riesz Representation) Let F be a bounded linear functional on Lp for 1 ≤ p < ∞.
Then there exists a function g ∈ Lq such that

F (f) =
∫
fg.

We also have ‖F‖ = ‖g‖q.

Proof: Just considering the finite dimensional case. Let µ be of finite measure. Then every bounded
measurable function is in Lp(µ). Define a set function ν on the measurable sets by ν(E) = F (χE). If
E is the union of a sequence En of disjoint measurable sets, define a sequence αn = sgnFχEn and set

f =
∑

αnχEn

Then F is bounded and we have
∞∑
n=1

|ν(En)| = F (f) <∞,
∞∑
n=1

ν(En) = F (f) = ν(E)

Hence ν is a signed measure, and by construction it is absolutely continuous with respect to µ. By the
Radon-Nikodym Theorem, there is a measurable function g such that for each measurable set E we
have

ν(E) =
∫
E

g dµ

Since ν is always finite implies that g integrable. Now if φ is a simple function, the linearity of F and
of the integral imply that

F (φ) =
∫
φg dµ

Since the left-hand side is bounded by ‖F‖‖φ‖p we have g ∈ Lq. Now let G be the bounded linear
functional defined on Lp by

G(f) =
∫
fg dµ
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Then G−F is a bounded linear function which vanishes on the subspace of simple functions, which are
dense in Lp. Hence we must have G− F = 0 in Lp. So for all f ∈ Lp, we have

F (f) =
∫
fg dµ

and by construction ‖F‖ = ‖G‖ = ‖g‖q �.

Exercise 4.10. Let (X ,M, µ) be a measure space and let f be an extended real-valued M- measurable
function on X such that ∫

X
|f |p dµ <∞ for p ∈ (0,∞).

Show that lim
λ→∞

λpµ{x : |f(x)| ≥ λ} = 0

Proof: First define the set Eλ = {x ∈ X : f(x) ≥ λ}. Now notice that Eν ⊂ Eλ if ν > λ, also because
f ∈ Lp we have µ(Eλ) < λ−1 if λ is large enough, in particular µ(E∞) = 0. Now

λpµ{x : |f(x)| ≥ λ} = λp
∫
Eλ

dµ ≤
∫
Eλ

|f |pdµ

Hence we have

lim
λ→∞

λpµ{x : |f(x) ≥ λ} ≤
∫
E∞

|f |pdµ = 0

Since f ∈ Lp, then |f |p ∈ L1(X ), µ(E∞) = 0 and the integral of an Lebesgue integrable function over
a set of measure zero is zero �.

5. Signed Measures

Remark: If (X ,M) is a measure space, and if µ, ν are two measure defined on (X ,M). µ and ν are
said to be mutually singular (µ⊥ν), if there are disjoint stes A and B, in M such that X = A ∪ B
and ν(A) = µ(B) = 0. A measure ν is said to be absolutely continuous with respect to the measure µ,
(ν << µ), if ν(A) = 0 for each set A for which µ(A) = 0.

Exercise 5.1. Let µ be a measure and let λ, λ1, λ2 be signed measure on the measurable space (X ,A).
Prove:

(a) If λ⊥µ and λ << µ, then λ = 0
(b) If λ1⊥µ and λ2⊥µ, then, if we set λ = c1λ1+c2λ2 with c1, c2 ∈ R such that λ is a signed measure,

thwn we have λ⊥µ.
(c) If λ1 << µ and λ2 << µ, then, if we set λ = c1λ1 + c2λ2 with c1, c2 ∈ R such that λ is a signed

measure, thwn we have λ << µ.

Proof: For part (a), if ν is a signed measure such that ν⊥µ and ν << µ. There are disjoint measurable
sets A and B such that X = A ∪ B and |ν|(B) = |µ|(A) = 0. Then |ν(A)| = 0 so |ν|(X) = |ν|(A) +
|ν|(B) = 0. Hence we have ν+ = ν− = 0 i.e. ν = 0.

For part (b), there are disjoint measurable sets Ai and Bi such that X = Ai∪Bi and µ(Bi) = νi(Ai) = 0,
for i = 1, 2. Now X = (A1 ∩A2) ∪ (B1 ∪B2) and (A1 ∩A2) ∩ (B1 ∪B2) = ∅. Now we have

(c1ν1 + c2ν2)(A1 ∩A2) = µ(B1 ∪B2) = 0 ⇒ (c1ν1 + c2ν2)⊥µ

For part (c), suppose ν1 << µ and ν2 << µ. If µ(E) = 0, then ν1(E) = ν2(E) = 0. Hence

(c1ν1 + c2ν2)(E) = 0 ⇒ (c1ν1 + c2ν2) << µ
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Exercise 5.2. Let µ be a positive measure and ν be a finite positive measure on a measurable space
(X ,M). Show that if ν << µ, then for every ε > 0 there is a δ > 0, such that for every E ⊂ M with
µ(E) < δ, we have ν(E) < ε.

Proof: Suppose not, Then there is an ε > 0 such that for every δ > 0, there is Eδ ⊂ M, such that
µ(Eδ) < δ, and ν(Eδ) ≥ ε. In particular, for every n ≥ 1, there is an En such that µ(En) < 1

n2 and
ν(En) ≥ ε. Now we have

∞∑
n=1

µ(En) =
∞∑
n=1

1
n2

<∞

Let E = lim supEn, then µ(E) = 0. Now since ν << µ, we have ν(E) = 0. Now

ν(E) = ν(lim supEn) ≥ lim sup ν(En) ≥ ε

But this implies that ν(En) ≥ ε > 0, and hence ν(E) > 0, which is a contradiction. Therefore given
ε > 0 there is a δ > 0, such that for every E ⊂M with µ(E) < δ, we have ν(E) < ε �.

Theorem (Hahn Decomposition) Let ν be a signed measure on the measurable space (X,M).
Then there is a positive set A and a negative set B such that X = A ∪B and A ∩B = ∅.

Theorem (Jordan Decomposition) Let ν be a signed measure on the measurable space (X,M).
Then there are two mutually singular measure ν+ and ν− on (X,M) such that ν = ν+−ν−. Moreover,
there is only one such pair of mutually singular measures.

Exercise 5.3. Suppose (X ,M) is a measurable space, and Y is the set of all signed measure ν on M
for which ν(E) <∞, whenevery E ⊂M. For ν1, ν2 ∈ Y , define

d(ν1, ν2) = sup
E∈M

|ν1(E)− ν2(E)|

Show that d is a metric on Y and that Y equipped with d is a complete metric space.

Proof: Since νi are choosen such that νi(E) < ∞, then for any ν1, ν2 ∈ Y and E ∈ M, we have
|ν1(E)− ν2(E)| <∞. So we have d : Y ×Y → [0,∞). Now to show d is a metric on Y we need to show
symmetry, positive definiteness and the triangle inequality. Clearly d(ν1, ν2) = d(ν2, ν1) by definition
of d. For the triangle inequality we have

d(µ, ν) = sup
E∈M

|µ(E)− ν(E)|

≤ sup
E∈M

{|ν(E)− σ(E)|+ |µ(E)− σ(E)|}

≤ sup
E∈M

{|ν(E)− σ(E)|}+
{

sup
F∈M

|µ(F )− σ(F )|
}

= d(µ, σ) + d(σ, ν)

Now to show definiteness, if µ = ν, then |µ(E) − ν(E)| = 0 for any E ∈ M, and so d(µ, ν) = 0.
On the other hand if d(µ, ν) = 0, then we have |µ(E) − ν(E)| = 0. Let (A1, B1), (A2, B2) be Hahn
decompostions of µ, and ν respectively.

Case 1: If E ⊂ A1∩A2, then µ(E) = µ+(E), and ν(Y ) = ν+(Y ), hence |µ(E)−ν(E)| = |µ+(E)−ν+(E)|.
So we have µ+ = ν+ on A1 ∩A2.

Case 2, 3: If E ⊂ A1 ∩B2, then we have µ(E) = −µ−(E) and ν(E) = ν+(E), hence

0 = |µ(E)− ν(E)| = | − µ−(E)− ν+(E)| = µ−(E) + ν+(E)

Hence µ− = ν+ = 0 on E ⊂ A1∩B2. If E ⊂ A2∩B1, by the same proof we have the result µ+ = ν− = 0
on E ⊂ A2 ∩B1
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Case 3: If E ⊂ B1 ∩B2, then µ(E) = −µ−(E) and ν(E) = −ν−(E). So

0 = |µ(E)− ν(E)| = | − µ−(E) + ν−(E)|
and so µ− = ν− = 0 on E ⊂ B1 ∩B2. So definiteness holds, therefore d is a metric on Y .

Now to show the metric space is complete. Let νn be a Cauchy sequence. Then for any ε > 0, there is
an N such that if m,n > N , we have

sup
E∈M

|vn(E)− vm(E)| < ε

If particular, for a fixed set E, we have νn is a Cauchy sequence in R. Hence there exists some µ(E) ∈ R,
such that νn → µ. By the uniform boundedness pricipal we know that µ is bounded, and hence

νn → µ in the metric d �

Remark: The measure |ν| is defined from the Jordan decomposition by, |ν|(E) = ν+E + ν−E.

Theorem (Radon-Nikodym) let (X ,M, µ) be a σ-finite measure space, and let ν be a measure
defined onM which is absolutely continuous with respect to µ. Then there is a nonnegative measurable
function f such that for each set E on M we have

ν(E) =
∫
E

f dµ

The function f is unique in the sense that if g is any measurable function with this property then g = f
almost everywhere.

Proof: Only the finite case is considered. Let µ be finite then ν − αµ is a signed measure for each
rational number α. Let (Aα, Bα) be a Hahn decomposition for ν − αµ, and take A0 = X and B0 = ∅.
Now Bα ∼ Bβ = Bα ∩Aβ . So we have

(ν − αµ)(Bα ∼ Bβ) ≤ 0 (ν − βµ)(Bα ∼ Bβ) ≥ 0

hence we must have µ(Bα ∼ Bβ) = 0. Now there exists a measurable function f such that for each
rational α we have f ≥ α almost everywhere on Aα and f ≤ α almost everywhere on Bα. Since B0 = ∅
be an arbitrary set in M, and set

Ek = E ∩ (B(k+1)/N ∼ Bk/N )

Then E = ∪
∞⋃
k=1

Ek, and this union is disjoint modulo null sets. Hence we have

ν(E) = ν(E∞) +
∞∑
k=0

ν(Ek).

Since Ek ⊂ B(k+1)/N ∩Ak/N , we have
k

N
≤ f ≤ k + 1

N
on Ek, and so

µ(Ek)
k

N
≤
∫
Ek

f dµ ≤ k + 1
N

µ(Ek).

Now since
k

N
µ(Ek) ≤ ν(Ek) ≤ k + 1

N
µ(Ek), we have

ν(Ek)− 1
N
µ(Ek) ≤

∫
Ek

f dµ ≤ ν(Ek) +
1
N
µ(Ek).

) On E∞ we have f =∞ almost everywhere. If µ(E∞) > 0, we must have ν(E∞) > 0, since (ν−αµ)(E∞
is positive for each α. If µ(E∞) = 0, we have ν(E∞) = 0. Since ν << µ, for either case we have

ν(E∞) =
∫
E∞

f dµ.

Hence we have
ν(E)− 1

N
µ(E) ≤

∫
E

f dµ ≤ ν(E) +
1
N
µ(E).
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Since µ(E) is finite and N arbitrary, we must have ν(E) =
∫
E

f dµ.

The function f =
[
dν
dµ

]
above is called the Radon-Nikodym derivative of ν with respect to µ.

Exercise 5.4. Suppose ν and µ are σ-finite measures on a measurable space (X ,A), such that ν << µ,
and ν << µ− ν. Prove that

µ

({
x ∈ X :

dν

dµ
= 1
})

= 0.

Proof: First notice that if E ⊂ X , such that (µ− ν)E = 0, then we have µ(E) = ν(E). But we have
ν << µ− ν, hence if (µ− ν)E = 0, then ν(E) = 0 = µ(E). Conversely if µ(E) = ν(E) and ν << µ− ν,
then µ(E) − ν(E) = 0, and so ν = 0 thus µ(E) = 0. So if ν(E) = µ(E), then ν(E) = µ(E) = 0. Now
let E =

{
x ∈ X : dνdµ = 1

}
and consider ν(E). By the Radon-Nikodym theorem we have

ν(E) =
∫
E

dν =
∫
E

dν

dµ
dµ

but dν
dµ = 1 on E, and so

ν(E) =
∫
E

dν

dµ
dµ =

∫
E

dµ = µ(E)

Hence µ(E) = µ
({
x ∈ X : dνdµ = 1

})
= 0 �

.

Exercise 5.5. Let µ and ν be two measure on the same measurable space, such that µ is σ-finite and
ν is absolutely continuous with respect to µ.

(a) If f is a nonngeative measurable function, show that∫
f dν =

∫
f

[
dν

dµ

]
dµ

(b) If f is a measurable function, prove that f is integrable with respect to ν, if and only if f
[
dν
dµ

]
is

integralble with respect to µ, and in this case, part (a) still holds.

Proof: For part (a), let E be a measurable set and let f = χE . Suppose that h =
[
dν
dµ

]
exists. Then∫

f dν =
∫
χE dν = ν(E) =

∫
E

h dµ =
∫
hχE dµ =

∫
fh dµ.

So the equality holds for charactersitc functions. Let f = φ be a simple function, then by the above we
have ∫

φ dν =
∫
φh dµ.

Now let f be a nonnegative measurable function. There there exists a monotone sequence of simple
functions φn such that 0 ≤ φn ≤ f and φn → f almost everywhere. Applying the Monotone Covergence
theorem, we have ∫

f dν = lim
n→∞

∫
φn dν = lim

n→∞

∫
φnh dµ =

∫
fh dµ �.

For part (b), f is ν-integrable if and only if
∫
f+ dν −

∫
f− dν is finite. Now by part (a) we have∫

f+ dν =
∫
f+h dµ and

∫
f− dν =

∫
f−h dµ.

So we have f is ν-integrable if and only if f is µ-integrable �.

Theorem (Lebesgue Decomposition) Let (X ,M, µ) be a σ-finite measure space and ν a σ-finite
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measure defined on M. Then we can find a measure ν0, singular with respect to µ and a measure ν1
absolutely continuous with respect to µ, such that ν = ν0 + ν1. Furthermore, the measures ν0 and ν1
are unique.

6. Topological and Product Measure Spaces

Exercise 6.1. Let L be a normed space. Then every weakly bounded set X is bounded.

Proof: Let φ : L → L∗∗, by φ(x)(f) = f(x), where x ∈ L, f ∈ L∗. Now X∗ is a Banach space and
φ(X) is a family of bounded linear functionals on X∗, and for each f ∈ L∗ we have

sup{φ(x)(f) : x ∈ X} = sup{f(x) : x ∈ X} <∞
Then from the uniform boundness principle we have

sup{‖x‖ : x ∈ X} = sup{‖φ(x)‖ : x ∈ X} <∞
Therefore every weakly bounded nonempty set of a normed space is bounded �.

Exercise 6.2. Suppose that A is a subset in R2. Define for each x ∈ R2, p(x) = inf{|y − x| : y ∈ A}.
Show that Br = {x : p(x) ≤ r} is a closed set for each nonnegative r. Is the measure of B0 equal to the
outer measure of A?

Proof: Let z ∈ (Br), and let ε > 0. Then there is x ∈ Br such that |x− z| < ε. So we have

p(z) = inf{|z − y| : y ∈ A}
≤ inf{|z − x|+ |x− y| : y ∈ A}
≤ ε+ inf{|x− y| : y ∈ A}
≤ ε+ r.

This is for all ε > 0, therefore p(z) ≤ r which implies z ∈ Br thus Br is closed. Now B0 = A ∪ ∂A.
First by definition of p(x) we have for any x ∈ A, p(x) = 0. Hence x ∈ B0, Now suppose that x ∈ ∂A,
then for any ε > 0, there is a y ∈ A such that |x− y| < ε. Therefore we have

p(z) = inf{|z − y| : y ∈ A} = 0 ⇒ x ∈ B0,

and so A ⊂ B0. Now suppose x ∈ B0. Then inf{|x− y| : y ∈ A} = 0, so for every ε > 0 there is a y ∈ A
such that |x− y| < ε. So x ∈ A, therefore we have B0 = A = A◦ ∪ ∂A. Now

µ∗(A) ≤ µ∗(B0) = µ∗(A◦ ∪ ∂A) = µ∗(A◦) + µ∗(∂A) = µ∗(A) + µ∗(∂A)

Since A◦ is open and A is measurable. Therefore µ∗(A) = µ(B0), if and only if µ∗(∂A) = 0 �.

Exercise 6.3. Prove that an algebraic basis in any infinite-dimensional Banach space must be uncount-
able.

Proof: Let V be an infinite-dimensional Banach space over F, and suppose {xn}n∈N is a countable
Hamel basis. Then v ∈ V if any only if there exists ai ∈ F such that

v =
k∑
i=1

aixi

for some xi ∈ {xn}. Now let 〈xi〉 denote the span of xi, then we have

V =
⋃
k∈N
〈{xn}kn=1〉

But this implies that V is a countable union of proper subspace of finite dimension. Which implies
that V would be of first category, since every finite dimensional proper subspace of a normed space is
nowhere dense. Which is a contradiction to the Baire Category Theorem. Therefore any basis for an
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infinite-dimensional Banach space must be uncountable �

Theorem (Hahn-Banach) Let p be a real-valued function defined on the vector space X satisfying
p(x+ y) ≤ p(x) + p(y) and p(αx) = αp(x) for each α ≥ 0. Suppose that f is a linear functional defined
on a subspace S and that f(s) ≤ p(s) for all s ∈ S. Then there is a linear function F defined on X
such that F (x) ≤ p(x) for all x, and F (s) = f(s) for all s ∈ S.

Exercise 6.4. Let ν be a finite Borel measure on the real line, and set F (x) = ν{(−∞, x]}. Prove
that ν is absolutely continuous with respect to the Lebesgue measure µ if and only if F is an absolutely
continuous function. In this case show that its Radon-Nikodym derivative is the derivative of F , almost
everywhere.

Proof: (⇒) First suppose that ν << µ. Let µ(E), then there exists an open set O, such that E ⊂ O
and µ(O) < ε. Now O being open, there are disjoint intervals (xk, yk), such that

O =
⋃
k=1

(xk, yk), ⇒ µ(O) =
∑
k=1

(yk − xk) < ε

Since ν << µ, there exists a delta such that if µ(O) < ε, then ν(O) < δ. So we have∑
k=1

|F (yk)− F (xk)| =
∑
k=1

ν(xk, yk) < δ

So F (x) is an absolutely continuous function.

(⇐) Suppose that F (x) is absolutely continuous. Then we have

∀ε > 0 ∃δ > 0 s.t.
∑
k=1

|yk − xk| < δ ⇒
∑
k=1

|F (yk)− F (xk)| < ε

Choose such disjoint intervals (xk, yk) and call the union of these intervals O, then we have µ(O) < ε.
Now by definition of F (x), we have

ν(O) =
∑
k=1

|F (yk)− F (xk)| < δ

and so ν << µ.

To see that F is Radon-Nikodym derivative, we know that since F is absolutely continuous we have
that F ′(t) exists almost everywhere so

ν(−∞, x] = F (x) =
∫ x

−∞
F ′(t) dµ(t)

We also have that

ν(−∞, x] =
∫ x

−∞
dν =

∫ x

−∞

[
dν

dµ

]
dµ

which implies that

ν(−∞, x] = F (x) =
∫ x

−∞
F ′(t) dµ(t) =

∫ x

−∞

[
dν

dµ

]
dµ

Hence by the Radon-Nikodym theorem we know that F ′ =
[
dν

dµ

]
almost everywhere.

Theorem (Tonneli’s) Suppose (X ×Y, σ(A×B), µ× ν) is the product space of two σ-finite measure
spaces, and f : X × Y → [0,∞] and f(x, y) be a nonnegative measurable function in the product
measure, then

F1(x) =
∫
Y
f(x, ·) dν is A measurable of x ∈ X
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F2(y) =
∫
X
f(·, y) dµ is B measurable of x ∈ Y

and ∫
X×Y

f d(µ) =
∫
X
F1 dµ =

∫
Y
F2 dν

i.e., the iterated integrals is equal to the the integral in the product space∫
X

(∫
Y
f(x, y) dν

)
dµ =

∫
Y

(∫
X
f(·, y) dµ

)
dν =

∫
X×Y

f(x, y) d(µ× ν).

Theorem (Fubini’s) Suppose(X × Y, σ(A× B), µ× ν) is the product space of two σ-finite measure
spaces, and f : X × Y → [0,∞] and f(x, y) be an integrable function in the product space, then∫

X

(∫
Y
f(x, y) dν

)
dµ =

∫
Y

(∫
X
f(·, y) dµ

)
dν =

∫
X×Y

f(x, y) d(µ× ν).

Theorem (Fubini-Tonelli) Suppose (X × Y, σ(A × B), µ × ν) is the product space of two σ-finite
measure spaces. Let f be an extended real-valued σ(A× B) measurable function on X × Y. If either∫

X

(∫
Y
|f | dν

)
dµ < or

∫
Y

(∫
X
|f | dµ

)
dν <∞

then f is µ× ν-integrable, furthermore the iterated integrals are equal to the product integral.

Exercise 6.5. Let f be a real valued measurable function on the finite measure space (X ,M, µ). Prove
that the function F (x, y) = f(x)−5f(y) + 4 is measurable in the product measure space (X ×X , σ(M×
M), µ× µ), and that F is integrable if and only if f is integrable.

Proof: First since f(x) is measurable, we have both sections F (x0, y), and F (x, y0) as measurable
for each fixed x0, y0. Now for x ∈ X we have F (x, x) = −4(f(x) − 1), which is measurable. Having
F (x, y) being measurable on each section, and the diagonal is enough for F (x, y) to be measurable in
the product space.

Now let f be integrable, hence |f | is integrable, so let M =
∫
X
|f(x)| dx, now we have∫

X

∫
X
|f(x)− 5f(y) + 4| dxdy ≤

∫
X
M + 5|f(y)|µ(X ) + 4µ(X ) dy

= Mµ(X ) + 5Mµ(X ) + 4µ(X )2

= 4µ(X )(M + µ(X )) <∞

by the same computation ⇒
∫
X

∫
X
|f(x)− 5f(y) + 4| dydx <∞

Then by Fubini-Tonelli theorem F (x, y) is integrable. Now suppose that F (x, y) is integrable, then by
Fubini’s theorem we have that the iterations are equal, but this is true if and only if f(x) is integrable
�.

Theorem (Stone-Weierstrass) Let X be a compacct space and A an algebra of continuous real-
valued functions on X that separates the points of X and contains the constant functions. Then given
any continuous real-valued function f on X and any ε > 0 there is a function g ∈ A such that for all
x ∈ X we have |g(x)− f(x)| < ε. In other words, A is a dense subset of C(X).

Theorem (Closed Graph) Let A be a linear transformation on a Banach space X to a Banach space
Y . Suppose that A has the property that, whenever xn is a sequence in X that converges to some point
x and Axn converges in Y to a point y, then y = Ax. Then A is continuous.



35

Exercise 6.6. Let (X ,A, µ) and (Y,B, ν) be the measure spaces given by
•X = Y = [0, 1]
•A = B = σ([0, 1])
•µ be the Lebesgue measure on R, and ν the counting measure.

Consider the product measure space (X × Y, σ(A× B)), and its subset E = {(x, y) ∈ X × Y : x = y}

(1) Show that E ⊂ σ(A× B)
(2) Show that

∫
X
∫
Y χE dν dµ 6=

∫
Y
∫
X χE dµ dν.

(3) Explain why Tonelli’s theorem is not applicable.

Proof: For (1) First notice that the following sets

Ak =
[
k − 1
n

,
k

n

]
×
[
k − 1
n

,
k

n

]
are measurable. Now let define En as follows

En =
n⋃
k=1

Ak,

Then the sets En are measurable as they are countable union of measurable sets. Then the set E is
given by

E =
∞⋂
n=1

En = {(x, y) ∈ X × Y : x = y}

is measurable since is a countable intersection of measurable sets.

For (2) by a direct computation we have∫
X

∫
Y
χE dν dµ =

∫ 1

0

ν(E)dµ =
∫ 1

0

dµ = 1

and ∫
Y

∫
X
χE dµ dν =

∫ 1

0

µ(E) dν =
∫ 1

0

0 dν = 0

Tonelli’s theorem is not applicable because the measure space (Y,B, ν) is not σ-finite �.
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