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Math 147: Quiz 7

(5) 1. Let f be a non-constant entire function. Prove that if lim |f(z)| = oo, then |f| must be a

|z| =00

polynomial.
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Solution: Consider g(z) = f (), then lin% g(z) = co. Now suppose that g(z) has a pole of order k
z z—

and consider the Laurent expansion:
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Now |zFg(2)| — ¢ = f(0) as |z| — oo. This implies by continuity that |z*g(z)| < (|| + 1)z* for large 2.
Hence z¥g(z) is a polynomial of at most degree k. Now we have:
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(5) 2. Show that for R > 0, there is Ng such that when n > Ng, the function
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Pn(z):1+z+%+---+%;£0, v |z| <R.
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Solution: First notice that P,(z) = E T and that P,(z) — e* uniformly as n — oo on compact sets
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of C. Fix R>0
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This implies that
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